Abstract
This is an overview of the twelfth edition of the BioASQ challenge in the context of the Conference and Labs of the Evaluation Forum (CLEF) 2024. BioASQ is a series of international challenges promoting advances in large-scale biomedical semantic indexing and question answering. This year, BioASQ consisted of new editions of the two established tasks b and Synergy, and two new tasks: a) MultiCardioNER on the adaptation of clinical entity detection to the cardiology domain in a multilingual setting, and b) BIONNE on nested NER in Russian and English. In this edition of BioASQ, 37 competing teams participated with more than 700 distinct submissions in total for the four different shared tasks of the challenge. Similarly to previous editions, most of the participating systems achieved competitive performance, suggesting the continuous advancement of the state-of-the-art in the field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Aksenova, A., Datseris, A., Vassileva, S., Boytcheva, S.: Transformer-based disease and drug named entity recognition in multilingual clinical texts: MultiCardioNER challenge. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Almeida, T., Jonker, R., Reis, J., Almeida, J., Matos, S.: From retrieval to answer generation: insights from BioASQ 12 task B. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Anaya, C., Fernandes, M., Couto, F.: LLM fine-tuning with biomedical open-source data. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Ateia, S., Kruschwitz, U.: Can open-source LLMs compete with commercial models? Exploring the few-shot performance of current GPT models in biomedical tasks. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Baldwin, B., Carpenter, B.: Lingpipe. Available from World Wide Web (2003). http://alias-i.com/lingpipe
Balikas, G., et al.: Evaluation framework specifications. Project deliverable D4.1, UPMC (2013)
Beltagy, I., Lo, K., Cohan, A.: SciBERT: pretrained language model for scientific text. In: EMNLP (2019)
Buonocore, T.M., Crema, C., Redolfi, A., Bellazzi, R., Parimbelli, E.: Localizing in-domain adaptation of transformer-based biomedical language models. J. Biomed. Inform. 144, 104431 (2023)
Chih, B.C., Han, J.C., Tzong-Han Tsai, R.: NCU-IISR: enhancing biomedical question answering with GPT-4 and retrieval augmented generation in BioASQ 12b phase B. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. CoRR abs/1911.02116 (2019). http://arxiv.org/abs/1911.02116
Danu, M.D., Marica, V.G., Suciu, C., Itu, L.M., Farri, O.: Multilingual clinical NER for diseases and medications recognition in cardiology texts using BERT embeddings. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Davydova, V., Loukachevitch, N., Tutubalina, E.: Overview of BioNNE task on biomedical nested named entity recognition at BioASQ 2024. In: CLEF Working Notes (2024)
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018). http://arxiv.org/abs/1810.04805
Galat, D., Moshkin, S.: Refining zero-short approaches for biomedical question answering. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Gao, Y., Zong, L., Li, Y.: Enhancing biomedical question answering with parameter-efficient fine-tuning and hierarchical retrieval augmented generation. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Gasco, L., et al.: Overview of BioASQ 2021-MESINESP track. Evaluation of advance hierarchical classification techniques for scientific literature, patents and clinical trials (2021)
Gonçalves, R., Lamúrias, A.: Team NOVA LINCS @ BIOASQ12 MultiCardioNER track: entity recognition with additional entity types. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Gu, Y., et al.: Domain-specific language model pretraining for biomedical natural language processing. ACM Trans. Comput. Healthc. (HEALTH) 3(1), 1–23 (2021)
He, P., Gao, J., Chen, W.: DeBERTaV3: improving DeBERTa using ELECTRA-style pre-training with gradient-disentangled embedding sharing (2021)
He, P., Liu, X., Gao, J., Chen, W.: DeBERTa: decoding-enhanced BERT with disentangled attention. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=XPZIaotutsD
Huang, B.W.: Generative large language models augmented hybrid retrieval system for biomedical question answering. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Jiang, A.Q., et al.: Mixtral of experts (2024)
Jonker, R., Almeida, T., Matos, S.: BIT.UA at MultiCardioNER: adapting a multi-head CRF for cardiology. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Krithara, A., Nentidis, A., Bougiatiotis, K., Paliouras, G.: BioASQ-QA: a manually curated corpus for biomedical question answering. Sci. Data 10(1), 170 (2023)
Krithara, A., Nentidis, A., Paliouras, G., Krallinger, M., Miranda, A.: BioASQ at CLEF2021: large-scale biomedical semantic indexing and question answering. In: Hiemstra, D., Moens, M.-F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds.) ECIR 2021. LNCS, vol. 12657, pp. 624–630. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72240-1_73
Lee, C., Simpson, T.I., Posma, J.M., Lain, A.D.: Comparative analyses of multilingual drug entity recognition systems for clinical case reports in cardiology. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Li, J., et al.: BioCreative V CDR task corpus: a resource for chemical disease relation extraction. Database J. Biol. Databases Curation 2016 (2016). https://doi.org/10.1093/database/baw068
Lima-López, S., Farré-Maduell, E., Brivá-Escalada, V., Gascó, L., Krallinger, M.: MEDDOPLACE Shared Task overview: recognition, normalization and classification of locations and patient movement in clinical texts. Procesamiento del Lenguaje Natural 71, 301–311 (2023)
Lima-López, S., Farré-Maduell, E., Gasco-Sánchez, L., Rodríguez-Miret, J., Krallinger, M.: Overview of SympTEMIST at BioCreative VIII: corpus, guidelines and evaluation of systems for the detection and normalization of symptoms, signs and findings from text. In: Proceedings of the BioCreative VIII Challenge and Workshop: Curation and Evaluation in the era of Generative Models (2023)
Lima-López, S., et al.: Overview of MedProcNER task on medical procedure detection and entity linking at BioASQ 2023. In: Working Notes of CLEF 2023 (2023)
Lima-López, S., et al.: Overview of MultiCardioNER task at BioASQ 2024 on medical speciality and language adaptation of clinical NER systems for Spanish, English and Italian. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Loukachevitch, N., et al.: NEREL: a Russian information extraction dataset with rich annotation for nested entities, relations, and wikidata entity links. Lang. Resour. Eval. 58, 547–583 (2023)
Loukachevitch, N., et al.: NEREL-BIO: a dataset of biomedical abstracts annotated with nested named entities. Bioinformatics 39(4), btad161 (2023). https://doi.org/10.1093/bioinformatics/btad161
Miranda-Escalada, A., et al.: Overview of DisTEMIST at BioASQ: automatic detection and normalization of diseases from clinical texts: results, methods, evaluation and multilingual resources (2022)
Nentidis, A., et al.: Overview of BioASQ 2023: the eleventh BioASQ challenge on large-scale biomedical semantic indexing and question answering. In: Arampatzis, A., et al. (eds.) CLEF 2023. LNCS, vol. 14163, pp. 227–250. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42448-9_19
Nentidis, A., Katsimpras, G., Krithara, A., Paliouras, G.: Overview of BioASQ tasks 12b and Synergy12 in CLEF2024. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Nentidis, A., et al.: Overview of BioASQ 2021: the ninth BioASQ challenge on large-scale biomedical semantic indexing and question answering. In: Candan, K.S., et al. (eds.) CLEF 2021. LNCS, vol. 12880, pp. 239–263. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85251-1_18
Nentidis, A., et al.: Overview of BioASQ 2022: the tenth BioASQ challenge on large-scale biomedical semantic indexing and question answering. In: Barrón-Cedeño, A., et al. (eds.) CLEF 2022. LNCS, vol. 13390, pp. 337–361. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13643-6_22
Nentidis, A., et al.: Overview of BioASQ 2020: the eighth BioASQ challenge on large-scale biomedical semantic indexing and question answering. In: Arampatzis, A., et al. (eds.) CLEF 2020. LNCS, vol. 12260, pp. 194–214. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58219-7_16
Nentidis, A., Krithara, A., Paliouras, G., Farre-Maduell, E., Lima-Lopez, S., Krallinger, M.: BioASQ at CLEF2023: the eleventh edition of the large-scale biomedical semantic indexing and question answering challenge. In: Kamps, J., et al. (eds.) ECIR 2023, Part III. LNCS, vol. 13982, pp. 577–584. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28241-6_66
Nentidis, A., Krithara, A., Paliouras, G., Gasco, L., Krallinger, M.: BioASQ at CLEF2022: the tenth edition of the large-scale biomedical semantic indexing and question answering challenge. In: Hagen, M., et al. (eds.) ECIR 2022. LNCS, vol. 13186, pp. 429–435. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99739-7_53
Nentidis, A., et al.: BioASQ at CLEF2024: the twelfth edition of the large-scale biomedical semantic indexing and question answering challenge. In: Goharian, N., et al. (eds.) ECIR 2024. LNCS, vol. 14612, pp. 490–497. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-56069-9_67
Panou, D., Dimopoulos, A., Reczko, M.: Farming open LLMs for biomedical question answering. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Rehana, H., et al.: Nested named entity recognition using multilayer BERT-based model. In: CLEF Working Notes (2024)
Reimer, J.H., Bondarenko, A., Hagen, M., Viehweger, A.: MiBi at BioASQ 2024: retrieval-augmented generation for answering biomedical questions. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Romano, A., Riccio, G., Postiglione, M., Moscato, V.: Identifying cardiological disorders in spanish via data augmentation and fine-tuned language models. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Rozhkov, I., Loukachevitch, N.: Prompts in few-shot named entity recognition. Pattern Recogn. Image Anal. 33(2), 122–131 (2023)
Styll, P., Campillos-Llanos, L., Kusa, W., Hanbury, A.: Cross-linguistic disease and drug detection in cardiology clinical texts: methods and outcomes. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Tsatsaronis, G., et al.: An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. BMC Bioinform. 16, 138 (2015)
Yang, Z., Zhou, Y., Eric, N.: Learning to answer biomedical questions: OAQA at bioASQ 4B. In: ACL 2016, p. 23 (2016)
Yasunaga, M., Leskovec, J., Liang, P.: LinkBERT: pretraining language models with document links. In: Association for Computational Linguistics (ACL) (2022)
Zhang, S., Cheng, H., Gao, J., Poon, H.: Optimizing bi-encoder for named entity recognition via contrastive learning. In: The Eleventh International Conference on Learning Representations (2022)
Zhou, W.: Biomedical nested NER with large language model and UMLS heuristics. In: CLEF Working Notes (2024)
Zhou, W., Ngo, T.H.: Using pretrained large language model with prompt engineering to answer biomedical questions. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Şerbetçi, O., Wang, X.D., Leser, U.: HU-WBI at BioASQ12B phase A: exploring rank fusion of dense retrievers for biomedical question answering. In: Faggioli, G., Ferro, N., Galuščáková, P., García Seco de Herrera, A. (eds.) CLEF Working Notes (2024)
Acknowledgments
Google was a proud sponsor of the BioASQ Challenge in 2023. Ovid is also sponsoring this edition of BioASQ. The twelfth edition of BioASQ is also sponsored by Elsevier. Atypon Systems Inc. is also sponsoring this edition of BioASQ. The MEDLINE/PubMed data resources considered in this work were accessed courtesy of the U.S. National Library of Medicine. BioASQ is grateful to the CMU team for providing the exact answer baselines for task 12b. The MultiCardioNER track was funded by Spanish and European projects such as DataTools4Heart (Grant Agreement No. 101057849), AI4HF (Grant Agreement No. 101080430), BARITONE (Proyectos de Transición Ecológica y Transición Digital 2021. Expediente \(\textrm{N}^{\underline{\textrm{o}}}\) TED2021-129974B-C21) and AI4ProfHealth (PID2020-119266RA-I00). The work on the BioNNE task was supported by the Russian Science Foundation [grant number 23-11-00358].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nentidis, A. et al. (2024). Overview of BioASQ 2024: The Twelfth BioASQ Challenge on Large-Scale Biomedical Semantic Indexing and Question Answering. In: Goeuriot, L., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2024. Lecture Notes in Computer Science, vol 14959. Springer, Cham. https://doi.org/10.1007/978-3-031-71908-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-71908-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71907-3
Online ISBN: 978-3-031-71908-0
eBook Packages: Computer ScienceComputer Science (R0)