AI-generated Key Takeaways
-
Calculates descriptive statistics (sum, min, max, mean, standard deviation, and variance) for a specified property within a FeatureCollection.
-
Accepts a FeatureCollection and the property name as input.
-
Returns a dictionary containing the calculated statistics.
-
Useful for understanding the distribution and central tendency of a property across features.
-
Examples demonstrate using the function with power plant data to calculate capacity statistics.
Usage | Returns |
---|---|
FeatureCollection.aggregate_stats(property) | Dictionary |
Argument | Type | Details |
---|---|---|
this: collection | FeatureCollection | The collection to aggregate over. |
property | String | The property to use from each element of the collection. |
Examples
Code Editor (JavaScript)
// FeatureCollection of power plants in Belgium. var fc = ee.FeatureCollection('WRI/GPPD/power_plants') .filter('country_lg == "Belgium"'); print('Power plant capacities (MW) summary stats', fc.aggregate_stats('capacitymw')); /** * Expected ee.Dictionary output * * { * "max": 2910, * "mean": 201.34242424242427, * "min": 1.8, * "sample_sd": 466.4808892319684, * "sample_var": 217604.42001864797, * "sum": 13288.600000000002, * "sum_sq": 16819846.24, * "total_count": 66, * "total_sd": 462.9334545609107, * "total_var": 214307.38335169878, * "valid_count": 66, * "weight_sum": 66, * "weighted_sum": 13288.600000000002 * } */
import ee import geemap.core as geemap
Colab (Python)
from pprint import pprint # FeatureCollection of power plants in Belgium. fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter( 'country_lg == "Belgium"') print('Power plant capacities (MW) summary stats:') pprint(fc.aggregate_stats('capacitymw').getInfo()) # Expected ee.Dictionary output # { # "max": 2910, # "mean": 201.34242424242427, # "min": 1.8, # "sample_sd": 466.4808892319684, # "sample_var": 217604.42001864797, # "sum": 13288.600000000002, # "sum_sq": 16819846.24, # "total_count": 66, # "total_sd": 462.9334545609107, # "total_var": 214307.38335169878, # "valid_count": 66, # "weight_sum": 66, # "weighted_sum": 13288.600000000002 # }