Skip to main content

Revisiting Silhouette Aggregation

  • Conference paper
  • First Online:
Discovery Science (DS 2024)

Abstract

Silhouette coefficient is an established internal clustering evaluation measure that produces a score per data point, assessing the quality of its clustering assignment. To assess the quality of the clustering of the whole dataset, the scores of all the points in the dataset are typically (micro) averaged into a single value. An alternative path, however, that is rarely employed, is to average first at the cluster level and then (macro) average across clusters. As we illustrate in this work with a synthetic example, the typical micro-averaging strategy is sensitive to cluster imbalance while the overlooked macro-averaging strategy is far more robust. By investigating macro-Silhouette further, we find that uniform sub-sampling, the only available strategy in existing libraries, harms the measure’s robustness against imbalance. We address this issue by proposing a per-cluster sampling method. An empirical analysis on eight real-world datasets in two clustering tasks reveals the disagreement between the two coefficients for imbalanced datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 59.99
Price excludes VAT (USA)
Softcover Book
USD 79.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf.

  2. 2.

    https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html.

  3. 3.

    https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html.

  4. 4.

    https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html.

References

  1. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  2. Layton, R., Watters, P., Dazeley, R.: Evaluating authorship distance methods using the positive silhouette coefficient. Nat. Lang. Eng. 19(4), 517–535 (2013)

    Article  Google Scholar 

  3. Bafna, P., Pramod, D., Vaidya, A.: Document clustering: TF-IDF approach. In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 61–66. IEEE (2016)

    Google Scholar 

  4. Tambunan, H.B., Barus, D.H., Hartono, J., Alam, A.S., Nugraha, D.A., Usman, H.H.H.: Electrical peak load clustering analysis using k-means algorithm and silhouette coefficient. In: 2020 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), pp. 258–262. IEEE (2020)

    Google Scholar 

  5. Gaudreault, J.-G., Branco, P.: Empirical analysis of performance assessment for imbalanced classification. Mach. Learn. 1–43 (2024)

    Google Scholar 

  6. Suhaimi, N.S., Othman, Z., Yaakub, M.R.: Comparative analysis between macro and micro-accuracy in imbalance dataset for movie review classification. In: Proceedings of Seventh International Congress on Information and Communication Technology: ICICT 2022, London, Volume 3, pp. 83–93. Springer, Cham (2022)

    Google Scholar 

  7. Schubert, E.: Stop using the elbow criterion for k-means and how to choose the number of clusters instead. ACM SIGKDD Explorations Newsl. 25(1), 36–42 (2023)

    Article  MATH  Google Scholar 

  8. Azimi, R., Ghayekhloo, M., Ghofrani, M., Sajedi, H.: A novel clustering algorithm based on data transformation approaches. Expert Syst. Appl. 76, 59–70 (2017)

    Article  MATH  Google Scholar 

  9. Dudek, A.: Silhouette index as clustering evaluation tool. In: Jajuga, K., Batóg, J., Walesiak, M. (eds.) SKAD 2019. SCDAKO, pp. 19–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52348-0_2

    Chapter  MATH�� Google Scholar 

  10. Ünlü, R., Xanthopoulos, P.: Estimating the number of clusters in a dataset via consensus clustering. Expert Syst. Appl. 125, 33–39 (2019)

    Article  MATH  Google Scholar 

  11. Batool, F., Hennig, C.: Clustering with the average silhouette width. Comput. Stat. Data Anal. 158, 107190 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shahapure, K.R., Nicholas, C.: Cluster quality analysis using silhouette score. In: 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), pp. 747–748. IEEE (2020)

    Google Scholar 

  13. Kang, J.H., Park, C.H., Kim, S.B.: Recursive partitioning clustering tree algorithm. Pattern Anal. Appl. 19, 355–367 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Řezanková, H.: Different approaches to the silhouette coefficient calculation in cluster evaluation. In: 21st International Scientific Conference AMSE Applications of Mathematics and Statistics in Economics, pp. 1–10 (2018)

    Google Scholar 

  15. Brun, M., et al.: Model-based evaluation of clustering validation measures. Pattern Recognit. 40(3), 807–824 (2007)

    Article  MATH  Google Scholar 

  16. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)

    Article  MATH  Google Scholar 

  17. Ezugwu, A.E., et al.: A comprehensive survey of clustering algorithms: state-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 110, 104743 (2022)

    Article  MATH  Google Scholar 

  18. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)

    Article  MATH  Google Scholar 

  19. Von Luxburg, U., Williamson, R.C., Guyon, I.: Clustering: science or art? In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 65–79. JMLR Workshop and Conference Proceedings (2012)

    Google Scholar 

  20. Rendón, E., Abundez, I., Arizmendi, A., Quiroz, E.M.: Internal versus external cluster validation indexes. Int. J. Comput. Commun. 5(1), 27–34 (2011)

    Google Scholar 

  21. Estévez, P.A., Tesmer, M., Perez, C.A., Zurada, J.M.: Normalized mutual information feature selection. IEEE Trans. Neural Netw. 20(2), 189–201 (2009)

    Article  Google Scholar 

  22. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11(95), 2837–2854 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  MATH  Google Scholar 

  24. Chacón, J.E., Rastrojo, A.I.: Minimum adjusted rand index for two clusterings of a given size. Adv. Data Anal. Classif. 1–9 (2022)

    Google Scholar 

  25. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. (2), 224–227 (1979)

    Google Scholar 

  27. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recognit. 46(1), 243–256 (2013)

    Article  MATH  Google Scholar 

  28. Capó, M., Pérez, A., Lozano, J.A.: Fast computation of cluster validity measures for bregman divergences and benefits. Pattern Recognit. Lett. 170, 100–105 (2023)

    Article  MATH  Google Scholar 

  29. Dua, D., Graff, C.: UCI machine learning repository (2017)

    Google Scholar 

  30. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1073–1080 (2009)

    Google Scholar 

  31. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

– This work has been supported by project MIS 5154714 of the National Recovery and Resilience Plan Greece 2.0 funded by the European Union under the NextGenerationEU Program.

– This research project is implemented in the framework of H.F.R.I. call “Basic research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union - NextGenerationEU (H.F.R.I. ProjectNumber: 15940).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Pavlopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pavlopoulos, J., Vardakas, G., Likas, A. (2025). Revisiting Silhouette Aggregation. In: Pedreschi, D., Monreale, A., Guidotti, R., Pellungrini, R., Naretto, F. (eds) Discovery Science. DS 2024. Lecture Notes in Computer Science(), vol 15243. Springer, Cham. https://doi.org/10.1007/978-3-031-78977-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78977-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78976-2

  • Online ISBN: 978-3-031-78977-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics