Abstract
Silhouette coefficient is an established internal clustering evaluation measure that produces a score per data point, assessing the quality of its clustering assignment. To assess the quality of the clustering of the whole dataset, the scores of all the points in the dataset are typically (micro) averaged into a single value. An alternative path, however, that is rarely employed, is to average first at the cluster level and then (macro) average across clusters. As we illustrate in this work with a synthetic example, the typical micro-averaging strategy is sensitive to cluster imbalance while the overlooked macro-averaging strategy is far more robust. By investigating macro-Silhouette further, we find that uniform sub-sampling, the only available strategy in existing libraries, harms the measure’s robustness against imbalance. We address this issue by proposing a per-cluster sampling method. An empirical analysis on eight real-world datasets in two clustering tasks reveals the disagreement between the two coefficients for imbalanced datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
References
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)
Layton, R., Watters, P., Dazeley, R.: Evaluating authorship distance methods using the positive silhouette coefficient. Nat. Lang. Eng. 19(4), 517–535 (2013)
Bafna, P., Pramod, D., Vaidya, A.: Document clustering: TF-IDF approach. In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 61–66. IEEE (2016)
Tambunan, H.B., Barus, D.H., Hartono, J., Alam, A.S., Nugraha, D.A., Usman, H.H.H.: Electrical peak load clustering analysis using k-means algorithm and silhouette coefficient. In: 2020 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), pp. 258–262. IEEE (2020)
Gaudreault, J.-G., Branco, P.: Empirical analysis of performance assessment for imbalanced classification. Mach. Learn. 1–43 (2024)
Suhaimi, N.S., Othman, Z., Yaakub, M.R.: Comparative analysis between macro and micro-accuracy in imbalance dataset for movie review classification. In: Proceedings of Seventh International Congress on Information and Communication Technology: ICICT 2022, London, Volume 3, pp. 83–93. Springer, Cham (2022)
Schubert, E.: Stop using the elbow criterion for k-means and how to choose the number of clusters instead. ACM SIGKDD Explorations Newsl. 25(1), 36–42 (2023)
Azimi, R., Ghayekhloo, M., Ghofrani, M., Sajedi, H.: A novel clustering algorithm based on data transformation approaches. Expert Syst. Appl. 76, 59–70 (2017)
Dudek, A.: Silhouette index as clustering evaluation tool. In: Jajuga, K., Batóg, J., Walesiak, M. (eds.) SKAD 2019. SCDAKO, pp. 19–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52348-0_2
Ünlü, R., Xanthopoulos, P.: Estimating the number of clusters in a dataset via consensus clustering. Expert Syst. Appl. 125, 33–39 (2019)
Batool, F., Hennig, C.: Clustering with the average silhouette width. Comput. Stat. Data Anal. 158, 107190 (2021)
Shahapure, K.R., Nicholas, C.: Cluster quality analysis using silhouette score. In: 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), pp. 747–748. IEEE (2020)
Kang, J.H., Park, C.H., Kim, S.B.: Recursive partitioning clustering tree algorithm. Pattern Anal. Appl. 19, 355–367 (2016)
Řezanková, H.: Different approaches to the silhouette coefficient calculation in cluster evaluation. In: 21st International Scientific Conference AMSE Applications of Mathematics and Statistics in Economics, pp. 1–10 (2018)
Brun, M., et al.: Model-based evaluation of clustering validation measures. Pattern Recognit. 40(3), 807–824 (2007)
Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)
Ezugwu, A.E., et al.: A comprehensive survey of clustering algorithms: state-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 110, 104743 (2022)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)
Von Luxburg, U., Williamson, R.C., Guyon, I.: Clustering: science or art? In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 65–79. JMLR Workshop and Conference Proceedings (2012)
Rendón, E., Abundez, I., Arizmendi, A., Quiroz, E.M.: Internal versus external cluster validation indexes. Int. J. Comput. Commun. 5(1), 27–34 (2011)
Estévez, P.A., Tesmer, M., Perez, C.A., Zurada, J.M.: Normalized mutual information feature selection. IEEE Trans. Neural Netw. 20(2), 189–201 (2009)
Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11(95), 2837–2854 (2010)
Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
Chacón, J.E., Rastrojo, A.I.: Minimum adjusted rand index for two clusterings of a given size. Adv. Data Anal. Classif. 1–9 (2022)
Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)
Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. (2), 224–227 (1979)
Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recognit. 46(1), 243–256 (2013)
Capó, M., Pérez, A., Lozano, J.A.: Fast computation of cluster validity measures for bregman divergences and benefits. Pattern Recognit. Lett. 170, 100–105 (2023)
Dua, D., Graff, C.: UCI machine learning repository (2017)
Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1073–1080 (2009)
Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013)
Acknowledgements
– This work has been supported by project MIS 5154714 of the National Recovery and Resilience Plan Greece 2.0 funded by the European Union under the NextGenerationEU Program.
– This research project is implemented in the framework of H.F.R.I. call “Basic research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union - NextGenerationEU (H.F.R.I. ProjectNumber: 15940).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pavlopoulos, J., Vardakas, G., Likas, A. (2025). Revisiting Silhouette Aggregation. In: Pedreschi, D., Monreale, A., Guidotti, R., Pellungrini, R., Naretto, F. (eds) Discovery Science. DS 2024. Lecture Notes in Computer Science(), vol 15243. Springer, Cham. https://doi.org/10.1007/978-3-031-78977-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-78977-9_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78976-2
Online ISBN: 978-3-031-78977-9
eBook Packages: Computer ScienceComputer Science (R0)