Skip to main content

Silhouette Index as Clustering Evaluation Tool

  • Conference paper
  • First Online:
Classification and Data Analysis (SKAD 2019)

Abstract

Silhouette index is commonly used in cluster analysis for finding the optimal number of clusters, as well as for final clustering validation and evaluation as a synthetic indicator allowing to measure the general quality of clustering (relative compactness and separability of clusters—see Walesiak and Gatnar in Statystyczna analiza danych z wykorzystaniem programu R. PWN, Warszawa, p. 420, 2009). Its advantage is low computational complexity and simple interpretation rules. Recently, some proposals have appeared to use this index directly as basis of clustering algorithms. The paper is a tryout of the evaluation of such approach. In the paper examples, when the “mechanical” use of the silhouette index leads to the results that do not correspond to the actual structure of the classes are shown, the recommendations on the principles of the correct application of the index are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Softcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arbelaitz O, Gurrutxaga I, Muguerza J, PéRez JM, Perona I (2013) An extensive comparative study of cluster validity indices. Pattern Recogn 46(1):243–256

    Article  Google Scholar 

  • Henning Ch (2015) What are the true clusters? Pattern Recogn Lett 64:53–62

    Article  Google Scholar 

  • Hubert LJ, Arabie P (1985) Comparing partitions. J Classif 2:193–218

    Article  Google Scholar 

  • Kang JH, Park CH, Kim SB (2016) Recursive partitioning clustering tree algorithm. Pattern Anal Appl 19(2):355–367

    Article  MathSciNet  Google Scholar 

  • Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    Book  Google Scholar 

  • Migdał-Najman K, Najman K (2006) Wykorzystanie indeksu silhouette do ustalania optymalnej liczby skupień. Wiadomości Statystyczne 6:1–10

    Google Scholar 

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  • Starczewski A, Krzyżak A (2015) Performance evaluation of the Silhouette index. International conference on artificial intelligence and soft computing. Springer, Cham, pp 49–58

    Chapter  Google Scholar 

  • Walesiak M, Gatnar E (eds) (2009) Statystyczna analiza danych z wykorzystaniem programu R. PWN, Warszawa

    Google Scholar 

  • Walesiak M, Dudek A (2019) clusterSim: searching for optimal clustering procedure for a data set. R package version 0.48-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Dudek .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Source Code of Procedure of Finding Number of Cluster with Silhouette Index in R Language

Appendix 2: Source Code of Clustering Tree (RPCT) Algorithm Implementation in R Language

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dudek, A. (2020). Silhouette Index as Clustering Evaluation Tool. In: Jajuga, K., Bat��g, J., Walesiak, M. (eds) Classification and Data Analysis. SKAD 2019. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-030-52348-0_2

Download citation

Keywords

Publish with us

Policies and ethics