Learning Crystallographic Disorder: Bridging Prediction and Experiment in Materials Discovery

25 July 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Recent computational materials discovery efforts have led to an enormous number of predictions of previously unknown, potentially stable inorganic, crystalline compounds. In particular, both high-throughput screenings and generative models have benefited tremendously from recent advances in computational resources and available data. However, these efforts are currently limited to predicting pristine crystalline materials. As a consequence, many of these predictions cannot be realized in experiments, where kinetic effects, defects, and crystallographic disorder can be crucial. To address this shortcoming, the current work aims to introduce disorder into computational materials discovery with machine learning (ML) based classification models. Trained on the inorganic crystal structure database (ICSD), these classifiers capture the chemical trends of crystallographic disorder and estimate the prevalence of disorder in computational databases produced by the Materials Project or Graph Networks for Materials Science (GNoME) initiatives. This opens the door towards disorder-aware computational materials discovery workflows, bridging the gap between prediction and experiment

Keywords

Disorder
Materials Dicovery

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.