Evals(api_client_: google.genai._api_client.BaseApiClient)
API documentation for Evals
class.
Methods
batch_evaluate
batch_evaluate(
*,
dataset: typing.Union[
vertexai._genai.types.EvaluationDataset,
vertexai._genai.types.EvaluationDatasetDict,
],
metrics: list[
typing.Union[vertexai._genai.types.Metric, vertexai._genai.types.MetricDict]
],
dest: str,
config: typing.Optional[
typing.Union[
vertexai._genai.types.EvaluateDatasetConfig,
vertexai._genai.types.EvaluateDatasetConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluateDatasetOperation
Evaluates a dataset based on a set of given metrics.
create_evaluation_run
create_evaluation_run(
*,
name: str,
display_name: typing.Optional[str] = None,
data_source: vertexai._genai.types.EvaluationRunDataSource,
dest: str,
config: typing.Optional[
typing.Union[
vertexai._genai.types.CreateEvaluationRunConfig,
vertexai._genai.types.CreateEvaluationRunConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluationRun
Creates an EvaluationRun.
evaluate
evaluate(
*,
dataset: typing.Union[
vertexai._genai.types.EvaluationDataset,
vertexai._genai.types.EvaluationDatasetDict,
list[
typing.Union[
vertexai._genai.types.EvaluationDataset,
vertexai._genai.types.EvaluationDatasetDict,
]
],
],
metrics: typing.Optional[
list[
typing.Union[vertexai._genai.types.Metric, vertexai._genai.types.MetricDict]
]
] = None,
config: typing.Optional[
typing.Union[
vertexai._genai.types.EvaluateMethodConfig,
vertexai._genai.types.EvaluateMethodConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluationResult
Evaluates candidate responses in the provided dataset(s) using the specified metrics.
evaluate_instances
evaluate_instances(
*, metric_config: vertexai._genai.types._EvaluateInstancesRequestParameters
) -> vertexai._genai.types.EvaluateInstancesResponse
Evaluates an instance of a model.
generate_rubrics
generate_rubrics(
*,
src: typing.Union[str, pd.DataFrame, vertexai._genai.types.EvaluationDataset],
rubric_group_name: str,
prompt_template: typing.Optional[str] = None,
generator_model_config: typing.Optional[genai_types.AutoraterConfigOrDict] = None,
rubric_content_type: typing.Optional[types.RubricContentType] = None,
rubric_type_ontology: typing.Optional[list[str]] = None,
predefined_spec_name: typing.Optional[
typing.Union[str, types.PrebuiltMetric]
] = None,
metric_spec_parameters: typing.Optional[dict[str, typing.Any]] = None,
config: typing.Optional[
typing.Union[
vertexai._genai.types.RubricGenerationConfig,
vertexai._genai.types.RubricGenerationConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluationDataset
Generates rubrics for each prompt in the source and adds them as a new column structured as a dictionary.
You can generate rubrics by providing either:
- A
predefined_spec_name
to use a Vertex AI backend recipe. - A
prompt_template
along with other configuration parameters (generator_model_config
,rubric_content_type
,rubric_type_ontology
) for custom rubric generation.
These two modes are mutually exclusive.
get_evaluation_run
get_evaluation_run(
*,
name: str,
config: typing.Optional[
typing.Union[
vertexai._genai.types.GetEvaluationRunConfig,
vertexai._genai.types.GetEvaluationRunConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluationRun
Retrieves an EvaluationRun from the resource name.
run
run() -> vertexai._genai.types.EvaluateInstancesResponse
Evaluates an instance of a model.
This should eventually call _evaluate_instances()
run_inference
run_inference(
*,
model: typing.Union[str, typing.Callable[[typing.Any], typing.Any]],
src: typing.Union[
str, pandas.core.frame.DataFrame, vertexai._genai.types.EvaluationDataset
],
config: typing.Optional[
typing.Union[
vertexai._genai.types.EvalRunInferenceConfig,
vertexai._genai.types.EvalRunInferenceConfigDict,
]
] = None
) -> vertexai._genai.types.EvaluationDataset
Runs inference on a dataset for evaluation.