Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Creating an atlas of variant effects to resolve variants of uncertain significance and guide cardiovascular medicine

Abstract

Cardiovascular diseases are leading global causes of death and disability, often presenting as interrelated phenotypes of atherosclerotic vascular disease, heart failure and arrhythmias. Cardiovascular diseases arise from interactions between environmental factors and predisposing genotypes and include common Mendelian lipid disorders, cardiomyopathies and arrhythmia syndromes. The identification of a pathogenic variant through genetic testing can inform disease diagnosis, risk prediction, treatment and family screening. However, a major roadblock in genomic medicine is that for many variants, especially missense variants, we lack sufficient evidence to enable a definitive classification, and therefore these variants are deemed as ‘variants of uncertain significance’. In this Review, we describe how multiplexed assays of variant effects can enable the functional assessment of nearly all coding variants in a target sequence, potentially offering a proactive approach to identifying the functional significance of gene variants that are observed later in a patient. We discuss validation, including the role of in silico variant effect predictors, and how multiplexed experimental methods are informing cardiovascular disease biology and ultimately resolving the problem of variants of uncertain significance at scale.

Key points

  • Although genetic testing is increasingly used in the clinical management of inherited cardiovascular disorders, most of the identified variants are classified as ‘variants of uncertain significance’.

  • Multiplexed assays of variant effects can be used to assess the function of nearly all coding variants in a target sequence, providing proactive evidence for variants observed in patients.

  • In silico variant effect predictors are becoming increasingly accurate and can provide predicted variant effects for nearly every variant in the genome.

  • Multiplexed assays of variant effects and variant effect predictors provide complementary data to inform cardiovascular disease biology and to resolve the problem of variant classification as variants of uncertain significance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The problem of variants of uncertain significance in cardiovascular disease-related genes.
Fig. 2: Multiplexed assays of variant effects in cardiovascular disease.
Fig. 3: Multiplexed assay of variant effect approach.
Fig. 4: Examples of multiplexed assay of variant effect.
Fig. 5: Variant effect map for KCNE1.

Similar content being viewed by others

Data availability

The data used for the analyses included in this manuscript are from the All of Us Research Program’s Controlled Tier Dataset version 8, available to authorized users on the Researcher Workbench via https://www.workbench.researchallofus.org. The UK Biobank data set is available by application via https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access.

References

  1. van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122, 433–443 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nelson, C. P. et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 49, 1385–1391 (2017).

    Article  PubMed  CAS  Google Scholar 

  3. Khera, A. V. & Kathiresan, S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat. Rev. Genet. 18, 331–344 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bezzina, C. R. et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 45, 1044–1049 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lahrouchi, N. et al. Transethnic genome-wide association study provides insights in the genetic architecture and heritability of long QT syndrome. Circulation 142, 324–338 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 11, 163 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Abul-Husn, N. S. et al. Genetic identification of familial hypercholesterolemia within a single U.S. health care system. Science 354, aaf7000 (2016).

    Article  PubMed  Google Scholar 

  8. Schwartz, P. J. et al. Prevalence of the congenital long-QT syndrome. Circulation 120, 1761–1767 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Roden, D. M. Drug-induced prolongation of the QT interval. N. Engl. J. Med. 350, 1013–1022 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. Kaab, S. et al. A large candidate gene survey identifies the KCNE1 D85N polymorphism as a possible modulator of drug-induced torsades de pointes. Circ. Cardiovasc. Genet. 5, 91–99 (2012).

    Article  PubMed  Google Scholar 

  11. Darbar, D., Yang, T., Churchwell, K., Wilde, A. A. & Roden, D. M. Unmasking of Brugada syndrome by lithium. Circulation 112, 1527–1531 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wada, Y. et al. Common ancestry-specific ion channel variants predispose to drug-induced arrhythmias. Circulation 145, 299–308 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Marian, A. J. & Braunwald, E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res. 121, 749–770 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hershberger, R. E., Hedges, D. J. & Morales, A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 10, 531–547 (2013).

    Article  PubMed  CAS  Google Scholar��

  15. McNally, E. M. & Mestroni, L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ. Res. 121, 731–748 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Choi, S. H. et al. Association between titin loss-of-function variants and early-onset atrial fibrillation. JAMA 320, 2354–2364 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Yoneda, Z. T. et al. Early-onset atrial fibrillation and the prevalence of rare variants in cardiomyopathy and arrhythmia genes. JAMA Cardiol. 6, 1371–1379 (2021).

    Article  PubMed  Google Scholar 

  18. Murdock, D. R. et al. Genetic testing in ambulatory cardiology clinics reveals high rate of findings with clinical management implications. Genet. Med. 23, 2404–2414 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Luirink, I. K. et al. 20-year follow-up of statins in children with familial hypercholesterolemia. N. Engl. J. Med. 381, 1547–1556 (2019).

    Article  PubMed  CAS  Google Scholar 

  20. Maron, B. J. Clinical course and management of hypertrophic cardiomyopathy. N. Engl. J. Med. 379, 655–668 (2018).

    Article  PubMed  Google Scholar 

  21. Rowin, E. J. et al. Long-term outcome in high-risk patients with hypertrophic cardiomyopathy after primary prevention defibrillator implants. Circ. Arrhythm. Electrophysiol. 13, e008123 (2020).

    Article  PubMed  Google Scholar 

  22. Al-Khatib, S. M. et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation 138, e272–e391 (2018).

    PubMed  Google Scholar 

  23. Aktaa, S. et al. European Society of Cardiology quality indicators for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Europace 25, 199–210 (2023).

    Article  PubMed  Google Scholar 

  24. Green, E. D. & Guyer, M. S. Charting a course for genomic medicine from base pairs to bedside. Nature 470, 204–213 (2011).

    Article  PubMed  CAS  Google Scholar 

  25. Green, E. D. et al. Strategic vision for improving human health at the forefront of genomics. Nature 586, 683–692 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Al-Khatib, S. M. et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society. Circulation 138, e210–e271 (2018).

    PubMed  Google Scholar 

  27. Grundy et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation 139, e1046–e1081 (2019).

    PubMed  Google Scholar 

  28. Mach, F. et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J. 41, 111–188 (2020).

    Article  PubMed  Google Scholar 

  29. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. Starita, L. M. et al. Variant interpretation: functional assays to the rescue. Am. J. Hum. Genet. 101, 315–325 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. eMERGE Clinical Annotation Working Group. Frequency of genomic secondary findings among 21,915 eMERGE network participants. Genet. Med. 22, 1470–1477 (2020).

    Article  Google Scholar 

  33. Acuna-Hidalgo, R., Veltman, J. A. & Hoischen, A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 17, 241 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shirts, B. H., Pritchard, C. C. & Walsh, T. Family-specific variants and the limits of human genetics. Trends Mol. Med. 22, 925–934 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Weile, J. & Roth, F. P. Multiplexed assays of variant effects contribute to a growing genotype–phenotype atlas. Hum. Genet. 137, 665–678 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Pottinger, T. D. et al. Pathogenic and uncertain genetic variants have clinical cardiac correlates in diverse biobank participants. J. Am. Heart Assoc. 9, e013808 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vanoye, C. G. et al. High-throughput functional evaluation of KCNQ1 decrypts variants of unknown significance. Circ. Genom. Precis. Med. 11, e002345 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ma, J. G. et al. Multisite validation of a functional assay to adjudicate SCN5A Brugada syndrome-associated variants. Circ. Genom. Precis. Med. 17, e004569 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Glazer, A. M. et al. Arrhythmia variant associations and reclassifications in the eMERGE-III sequencing study. Circulation 145, 877–891 (2022).

    Article  PubMed  CAS  Google Scholar 

  40. Tabet, D., Parikh, V., Mali, P., Roth, F. P. & Claussnitzer, M. Scalable functional assays for the interpretation of human genetic variation. Annu. Rev. Genet. 56, 441–465 (2022).

    Article  PubMed  CAS  Google Scholar 

  41. Weile, J. et al. A framework for exhaustively mapping functional missense variants. Mol. Syst. Biol. 13, 957 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fowler, D. M. et al. An atlas of variant effects to understand the genome at nucleotide resolution. Genome Biol. 24, 147 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hess, G. T. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13, 1036–1042 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Findlay, G. M., Boyle, E. A., Hause, R. J., Klein, J. C. & Shendure, J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature 513, 120–123 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Matreyek, K. A., Stephany, J. J. & Fowler, D. M. A platform for functional assessment of large variant libraries in mammalian cells. Nucleic Acids Res. 45, e102 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Matreyek, K. A., Stephany, J. J., Chiasson, M. A., Hasle, N. & Fowler, D. M. An improved platform for functional assessment of large protein libraries in mammalian cells. Nucleic Acids Res. 48, e1 (2020).

    PubMed  CAS  Google Scholar 

  47. Zhu, F. et al. DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Res. 42, e34 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Thuronyi, B. W. et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat. Biotechnol. 37, 1070–1079 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Friedman, C. E. et al. CRaTER enrichment for on-target gene editing enables generation of variant libraries in hiPSCs. J. Mol. Cell Cardiol. 179, 60–71 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Dainis, A. et al. Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes. Physiol. Genom. 52, 293–303 (2020).

    Article  CAS  Google Scholar 

  54. Matreyek, K. A. et al. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat. Genet. 50, 874–882 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Muhammad, A. et al. High-throughput functional mapping of variants in an arrhythmia gene, KCNE1, reveals novel biology. Genome Med. 16, 73 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Floyd, B. J. et al. Proactive variant effect mapping aids diagnosis in pediatric cardiac arrest. Circ. Genom. Precis. Med. 16, e003792 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang, Z. & Moult, J. SNPs, protein structure, and disease. Hum. Mutat. 17, 263–270 (2001).

    Article  PubMed  Google Scholar 

  58. Yue, P., Li, Z. & Moult, J. Loss of protein structure stability as a major causative factor in monogenic disease. J. Mol. Biol. 353, 459–473 (2005).

    Article  PubMed  CAS  Google Scholar 

  59. Schlebach, J. P. & Sanders, C. R. The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q. Rev. Biophys. 48, 1–34 (2015).

    Article  PubMed  CAS  Google Scholar 

  60. Zhou, Y. & Bowie, J. U. Building a thermostable membrane protein. J. Biol. Chem. 275, 6975–6979 (2000).

    Article  PubMed  CAS  Google Scholar 

  61. Friedman, C. E. et al. Multiplexed functional assessments of MYH7 variants in human cardiomyocytes. Circ. Genom. Precis. Med. 17, e004377 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Levy, E. D., Kowarzyk, J. & Michnick, S. W. High-resolution mapping of protein concentration reveals principles of proteome architecture and adaptation. Cell Rep. 7, 1333–1340 (2014).

    Article  PubMed  CAS  Google Scholar 

  63. Beltran, A., Jiang, X., Shen, Y. & Lehner, B. Site-saturation mutagenesis of 500 human protein domains. Nature 637, 885–894 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Anderson, C. L. et al. Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113, 365–373 (2006).

    Article  PubMed  CAS  Google Scholar 

  65. Coyote-Maestas, W., Nedrud, D., He, Y. & Schmidt, D. Determinants of trafficking, conduction, and disease within a K+ channel revealed through multiparametric deep mutational scanning. eLife 11, e76903 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ng, C.-A. et al. A massively parallel assay accurately discriminates between functionally normal and abnormal variants in a hotspot domain of KCNH2. Am. J. Hum. Genet. 109, 1208–1216 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kozek, K. A. et al. High-throughput discovery of trafficking-deficient variants in the cardiac potassium channel KV11.1. Heart Rhythm 17, 2180–2189 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. O’Neill, M. J. et al. Multiplexed assays of variant effect and automated patch clamping improve KCNH2-LQTS variant classification and cardiac event risk stratification. Circulation 150, 1869–1881 (2024).

    Article  PubMed  Google Scholar 

  69. Varró, A. et al. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol. Rev. 101, 1083–1176 (2021).

    Article  PubMed  Google Scholar 

  70. Radford, E. J. et al. Saturation genome editing of DDX3X clarifies pathogenicity of germline and somatic variation. Nat. Commun. 14, 7702 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Buckley, M. et al. Saturation genome editing maps the functional spectrum of pathogenic VHL alleles. Nat. Genet. 56, 1446–1455 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Olvera-León, R. et al. High-resolution functional mapping of RAD51C by saturation genome editing. Cell 187, 5719–5734.e19 (2024).

    Article  PubMed  Google Scholar 

  73. Sahu, S. et al. Saturation genome editing-based clinical classification of BRCA2 variants. Nature 638, 538–545 (2025).

    Article  PubMed  CAS  Google Scholar 

  74. Aregger, M. et al. Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism. Nat. Metab. 2, 499–513 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ov, V. V., Stys, P. K. & Hu, B. Regulation of Na+,K+-ATPase by persistent sodium accumulation in adult rat thalamic neurones. J. Physiol. 525, 343–353 (2000).

    Article  Google Scholar 

  76. Glazer, A. M. et al. Deep mutational scan of an SCN5A voltage sensor. Circ. Genom. Precis. Med. 13, e002786 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Chen, Y. H. et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299, 251–254 (2003).

    Article  PubMed  CAS  Google Scholar 

  78. Peng, G., Barro-Soria, R., Sampson, K. J., Larsson, H. P. & Kass, R. S. Gating mechanisms underlying deactivation slowing by two KCNQ1 atrial fibrillation mutations. Sci. Rep. 7, 45911 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Pettinato, A. M. et al. Development of a cardiac sarcomere functional genomics platform to enable scalable interrogation of human TNNT2 variants. Circulation 142, 2262–2275 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Dou, W. et al. Microengineered platforms for characterizing the contractile function of in vitro cardiac models. Microsyst. Nanoeng. 8, 26 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Nag, S. et al. The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Nat. Struct. Mol. Biol. 24, 525–533 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Garcia-Pavia, P. et al. Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation 140, 31–41 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Smith, E. D. et al. Desmoplakin cardiomyopathy, a fibrotic and inflammatory form of cardiomyopathy distinct from typical dilated or arrhythmogenic right ventricular cardiomyopathy. Circulation 141, 1872–1884 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Mazzarotto, F. et al. Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation 141, 387–398 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Parikh, V. N. et al. Regional variation in RBM20 causes a highly penetrant arrhythmogenic cardiomyopathy. Circ. Heart Fail. 12, e005371 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Masaeli, M. et al. Multiparameter mechanical and morphometric screening of cells. Sci. Rep. 6, 37863 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Mavropoulos, A. et al. Artificial intelligence-driven morphology-based enrichment of malignant cells from body fluid. Mod. Pathol. 36, 100195 (2023).

    Article  PubMed  CAS  Google Scholar 

  88. Ritter, P. et al. LDL cholesterol uptake assay using live cell imaging analysis with cell health monitoring. J. Vis. Exp. https://doi.org/10.3791/58564 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Jasiecki, J. et al. Novel tools for comprehensive functional analysis of LDLR (low-density lipoprotein receptor) variants. Int. J. Mol. Sci. 24, 11435 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Zurzolo, C. & Simons, K. Glycosylphosphatidylinositol-anchored proteins: membrane organization and transport. Biochim. Biophys. Acta 1858, 632–639 (2016).

    Article  PubMed  CAS  Google Scholar 

  91. Popp, N. A. et al. Multiplex and multimodal mapping of variant effects in secreted proteins via MultiSTEP. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-025-01582-w (2025).

  92. Zheng, Y. & VanDusen, N. J. Massively parallel reporter assays for high-throughput in vivo analysis of cis-regulatory elements. J. Cardiovasc. Dev. Dis. 10, 144 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Akerberg, B. N. et al. A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers. Nat. Commun. 10, 4907 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cao, Y. et al. In vivo dissection of chamber-selective enhancers reveals estrogen-related receptor as a regulator of ventricular cardiomyocyte identity. Circulation 147, 881–896 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kircher, M. et al. Saturation mutagenesis of twenty disease-associated regulatory elements at single base-pair resolution. Nat. Commun. 10, 3583 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Agarwal, V. et al. Massively parallel characterization of transcriptional regulatory elements. Nature 639, 411–420 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Neums, L. et al. VaDiR: an integrated approach to variant detection in RNA. Gigascience 7, 1–13 (2018).

    Article  PubMed  CAS  Google Scholar 

  98. O’Neill, M. J. et al. ParSE-seq: a calibrated multiplexed assay to facilitate the clinical classification of putative splice-altering variants. Nat. Commun. 15, 8320 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).

    Article  PubMed  CAS  Google Scholar 

  101. van den Hoogenhof, M. M. G., Pinto, Y. M. & Creemers, E. E. RNA splicing: regulation and dysregulation in the heart. Circ. Res. 118, 454–468 (2016).

    Article  PubMed  Google Scholar 

  102. Orho-Melander, M. et al. Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes 57, 3112–3121 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Laber, S. et al. Discovering cellular programs of intrinsic and extrinsic drivers of metabolic traits using LipocyteProfiler. Cell Genom. 3, 100346 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Rubin, A. F. et al. A statistical framework for analyzing deep mutational scanning data. Genome Biol. 18, 150 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Faure, A. J., Schmiedel, J. M., Baeza-Centurion, P. & Lehner, B. DiMSum: an error model and pipeline for analyzing deep mutational scanning data and diagnosing common experimental pathologies. Genome Biol. 21, 207 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. O’Neill, M. J. et al. Cohort-scale automated patch clamp data improves variant classification and penetrance stratification for SCN5A-Brugada syndrome. Preprint at medRxiv https://doi.org/10.1101/2025.03.09.25323605 (2025).

  107. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–423 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Brnich, S. E. et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 12, 3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tabet, D. R. et al. Benchmarking computational variant effect predictors by their ability to infer human traits. Genome Biol. 25, 172 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Dawood, M. et al. Using multiplexed functional data to reduce variant classification inequities in underrepresented populations. Genome Med. 16, 143 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Fayer, S. et al. Closing the gap: systematic integration of multiplexed functional data resolves variants of uncertain significance in BRCA1, TP53, and PTEN. Am. J. Hum. Genet. 108, 2248–2258 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Claussnitzer, M. et al. Minimum information and guidelines for reporting a multiplexed assay of variant effect. Genome Biol. 25, 100 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).

    Article  PubMed  CAS  Google Scholar 

  114. Rubin, A. F. et al. MaveDB 2024: a curated community database with over seven million variant effects from multiplexed functional assays. Genome Biol. 26, 13 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Schmidt, R. J. et al. Recommendations for risk allele evidence curation, classification, and reporting from the ClinGen low penetrance/risk allele working group. Genet. Med. 26, 101036 (2024).

    Article  PubMed  CAS  Google Scholar 

  116. Froese, D. S. et al. Mutation update and review of severe methylenetetrahydrofolate reductase deficiency. Hum. Mutat. 37, 427–438 (2016).

    Article  PubMed  CAS  Google Scholar 

  117. Weile, J. et al. Shifting landscapes of human MTHFR missense-variant effects. Am. J. Hum. Genet. 108, 1283–1300 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023).

    Article  PubMed  CAS  Google Scholar 

  121. Dries, A. M. et al. The genetic architecture of Plakophilin 2 cardiomyopathy. Genet. Med. 23, 1961–1968 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Kroncke, B. M. et al. Protein structure aids predicting functional perturbation of missense variants in SCN5A and KCNQ1. Comput. Struct. Biotechnol. J. 17, 206–214 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Kroncke, B. M. et al. A Bayesian method to estimate variant-induced disease penetrance. PLoS Genet. 16, e1008862 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Yamagata, K. et al. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384, 455–458 (1996).

    Article  PubMed  CAS  Google Scholar 

  125. DeForest, N. et al. Human gain-of-function variants in HNF1A confer protection from diabetes but independently increase hepatic secretion of atherogenic lipoproteins. Cell Genom. 3, 100339 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Amorosi, C. J. et al. Massively parallel characterization of CYP2C9 variant enzyme activity and abundance. Am. J. Hum. Genet. 108, 1735–1751 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Boyle, G. E. et al. Deep mutational scanning of CYP2C19 in human cells reveals a substrate specificity–abundance tradeoff. Genetics228, iyae156 (2024).

    Article  PubMed  CAS  Google Scholar 

  128. Roden, D. M. et al. Pharmacogenomics. Lancet 394, 521–532 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Livesey, B. J. & Marsh, J. A. Using deep mutational scanning to benchmark variant effect predictors and identify disease mutations. Mol. Syst. Biol. 16, e9380 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Livesey, B. J. & Marsh, J. A. Updated benchmarking of variant effect predictors using deep mutational scanning. Mol. Syst. Biol. 19, e11474 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Finucane, H. K. et al. Variant scoring performance across selection regimes depends on variant-to-gene and gene-to-disease components. Preprint at bioRxiv https://doi.org/10.1101/2024.09.17.613327 (2024).

  132. Livesey, B. J. & Marsh, J. A. Variant effect predictor correlation with functional assays is reflective of clinical classification performance. Genome Biol. 26, 104 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Grimm, D. G. et al. The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity. Hum. Mutat. 36, 513–523 (2015).

    Article  PubMed  Google Scholar 

  134. Livesey, B. J. & Marsh, J. A. Interpreting protein variant effects with computational predictors and deep mutational scanning. Dis. Model. Mech.15, dmm049510 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Brandes, N., Goldman, G., Wang, C. H., Ye, C. J. & Ntranos, V. Genome-wide prediction of disease variant effects with a deep protein language model. Nat. Genet. 55, 1512–1522 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Wu, Y., Li, R., Sun, S., Weile, J. & Roth, F. P. Improved pathogenicity prediction for rare human missense variants. Am. J. Hum. Genet. 108, 1891–1906 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).

    Article  PubMed  CAS  Google Scholar 

  139. Pejaver, V. et al. ClinGen Sequence Variant Interpretation Working Group. Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria. Am. J. Hum. Genet. 109, 2163–2177 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Bergquist, T. et al. ClinGen Sequence Variant Interpretation Working Group. Calibration of additional computational tools expands ClinGen recommendation options for variant classification with PP3/BP4 criteria. Genet. Med. 27, 101402 (2025).

    Article  PubMed  CAS  Google Scholar 

  141. Tejura, M. et al. Calibration of variant effect predictors on genome-wide data masks heterogeneous performance across genes. Am. J. Hum. Genet. 111, 2031–2043 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Riesselman, A. J., Ingraham, J. B. & Marks, D. S. Deep generative models of genetic variation capture the effects of mutations. Nat. Methods 15, 816–822 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Nykamp, K. et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet. Med. 19, 1105–1117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Gerasimavicius, L., Livesey, B. J. & Marsh, J. A. Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure. Nat. Commun. 13, 3895 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Ho, C. Y. et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation 138, 1387–1398 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Frazer, J. et al. Disease variant prediction with deep generative models of evolutionary data. Nature 599, 91–95 (2021).

    Article  PubMed  CAS  Google Scholar 

  147. Ng, P. C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    Article  PubMed  CAS  Google Scholar 

  149. Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7, e46688 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein blocks. Proc. Natl Acad. Sci. USA 89, 10915–10919 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/0471142905.hg0720s76 (2013).

  152. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Schubach, M., Maass, T., Nazaretyan, L., Röner, S. & Kircher, M. CADD v1.7: using protein language models, regulatory CNNs and other nucleotide-level scores to improve genome-wide variant predictions. Nucleic Acids Res. 52, D1143–D1154 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Chu, Y. et al. A 5′ UTR language model for decoding untranslated regions of mRNA and function predictions. Nat. Mach. Intell. 6, 449–460 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Shearer, C. A. et al. LOL-EVE: predicting promoter variant effects from evolutionary sequences. Preprint at bioRxiv https://doi.org/10.1101/2024.11.11.623015 (2024).

  156. Hoffman, G. E., Bendl, J., Girdhar, K., Schadt, E. E. & Roussos, P. Functional interpretation of genetic variants using deep learning predicts impact on chromatin accessibility and histone modification. Nucleic Acids Res. 47, 10597–10611 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Ioannidis, N. M. et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants HL149826, HL164675, HL168059, GM150465, HG010904, HL160863, HG010461 and HG011989. The authors gratefully acknowledge UK Biobank and All of Us participants for their contributions, without whom this research would not have been possible. The authors also thank the UK BioBank and the NIH All of Us Research Program for making available the participant data examined in this study.

Author information

Authors and Affiliations

Authors

Contributions

A.M.G., D.R.T., V.N.P., B.M.K., A.G.C., C.A.M., E.A.A., F.P.R. and D.M.R. wrote the article. All authors researched data for the article, contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Dan M. Roden.

Ethics declarations

Competing interests

A.M.G. is a consultant for BioMarin. V.N.P. is a consultant and Scientific Advisory Board member for Lexeo Therapeutics, clinical adviser for Constantiam Biosciences, consultant and conducts sponsored research for BioMarin and minor consultant for Nuevocor and Borealis. C.A.M. is founder of Atman Health and Tanaist Bio; adviser for Adrestia, Affinia, Alliance of Genomic Resources, Astellas, BioSymetrics, Dewpoint, Foresite Labs, EOM and Nuevocor; non-executive director of Life MD, TMA Precision Medicine and Tanaist Bio; owns stock from BioSymetrics, Bodyport, Life MD and TMA Precision Medicine; and has provided in-kind collaborative support to Astra Zeneca, Quest Diagnostics and Apple. E.A.A. is a founder of Candela, Deepcell, Parameter Health, Personalis, Saturnus Bio and Svexa; is an adviser for SequenceBio, Foresite Labs, Pacific Biosciences and Versant Ventures; is a non-executive director of AstraZeneca and Svexa; owns stock from Pacific Biosciences and AstraZeneca; and has provided in-kind collaborative support to Cache, Cellsonics, Illumina, Oxford Nanopore and Pacific Biosciences. F.P.R. is an adviser for and shareholder of Constantiam Biosciences. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Jodie Ingles, Roddy Walsh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Informed consent and ethics approval

The authors affirm that human research participants provided informed consent for use of their data via the UK Biobank and All of Us projects, and data sets were analysed in accordance with the associated data use agreements. The transfer of human data was approved and overseen by the UK Biobank Ethics Advisory Committee. The analyses in this manuscript were performed in alignment with the ethical principles outlined in the All of Us Policy on the Ethical Conduct of Research.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

All of Us: https://allofus.nih.gov/

ClinGen: https://clinicalgenome.org/

ClinVar: https://www.ncbi.nlm.nih.gov/clinvar/

gnomAD: https://gnomad.broadinstitute.org/

MaveDB: https://www.mavedb.org/

UK Biobank: https://www.ukbiobank.ac.uk/

Glossary

ClinGen

An NIH-supported effort that curates the relationships between genetic variants and disease susceptibility.

ClinVar

A public NIH database of genomic variants and their clinical interpretations.

Deep sequencing

DNA sequencing at sufficient depth to enable detection of rare variants and quantification of variant frequency.

Genome Aggregation Database

(gnomAD). A publicly available database that, in 2025, listed sequence variants in 730,947 exome sequences and 76,215 whole-genome sequences in ancestrally diverse populations.

Intrinsically disordered regions

Protein segments that lack a fixed 3D structure and often mediate flexible interactions between protein domains.

Landing pad

A genomic site engineered to allow consistent integration and expression of DNA constructs.

Massively parallel reporter assays

(MPRAs). Method to test the regulatory activity of thousands of DNA sequences simultaneously using barcoded reporters.

Mendelian cardiovascular conditions

Inherited disorders mainly caused by variants in a single gene that affect the heart, blood vessels or lipid metabolism; for example, familial hypercholesterolaemia, hypertrophic cardiomyopathy and long QT syndrome.

Polygenic scores

An estimate of disease risk based on the additive effect of many common genetic variants identified by genome-wide association studies of disease risk.

Splice-disrupting variants

Variants that alter RNA splicing, potentially affecting gene expression or protein structure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazer, A.M., Tabet, D.R., Parikh, V.N. et al. Creating an atlas of variant effects to resolve variants of uncertain significance and guide cardiovascular medicine. Nat Rev Cardiol (2025). https://doi.org/10.1038/s41569-025-01201-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-025-01201-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing