Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunometabolism in heart failure

Abstract

The interaction between inflammation and metabolism (immunometabolism) is a crucial factor in the pathophysiology of heart failure, whether the cardiac failure originates from ischaemic injury or systemic metabolic disorders, and whether it is associated with reduced or preserved ejection fraction. Ischaemia, metabolic stress and comorbidity-driven systemic inflammation attract innate and adaptive immune cells to the myocardium and induce their polarization towards pro-inflammatory or anti-inflammatory phenotypes through cell-intrinsic metabolic shifts involving oxidative phosphorylation and anaerobic glycolysis. These infiltrating immune cells modulate cardiac and systemic metabolism. The bidirectional metabolic crosstalk between immune cells and parenchymal and stromal cardiac cells contributes to adverse cardiac remodelling. In turn, ischaemic injury and deregulated metabolism stimulate bone marrow and extramedullary myelopoiesis, which increases immune cell recruitment and perpetuates a non-resolving chronic inflammatory state. Pharmacological interventions targeting metabolism have shown promise for improving outcomes in patients with heart failure, but immunomodulatory approaches face multiple challenges. Understanding the complex metabolic pathways and cell–cell interactions that regulate immunometabolism in heart failure is essential to identify new therapies that shift the balance from maladaptive to cardioprotective immune responses. In this Review, we provide a comprehensive overview of the intricate cellular and molecular mechanisms that govern immunometabolism in heart failure and discuss potential approaches to non-invasively monitor and treat patients with heart failure.

Key points

  • The immunometabolic shift between oxidative phosphorylation and glycolysis is crucial for the immune response after acute myocardial infarction or prolonged exposure to metabolic disorders.

  • The bone marrow and the spleen are sources of immune cells, which are released and recruited to the injured heart; the persistent recruitment of immune cells over prolonged periods contributes to the development and progression of heart failure.

  • In heart failure, bidirectional metabolic crosstalk between immune cells and parenchymal and stromal cardiac cells contributes to adverse cardiac remodelling.

  • Advances in molecular imaging techniques enable non-invasive tracking of immune cell trafficking to assess disease progression and response to treatments.

  • Current and emerging therapeutic strategies that more precisely target inflammatory pathways and metabolic processes than guideline-recommended therapies present new opportunities to manage heart failure effectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunometabolism as a fundamental driver of inflammation and subsequent development of HFrEF or HFpEF.
Fig. 2: Energy metabolism pathways in immune cells.
Fig. 3: Metabolic circuits underlying the crosstalk between parenchymal, stromal and immune cells in the diseased myocardium.
Fig. 4: Role of bone marrow, spleen, autonomic nervous system and circulating signals in cardiac damage.
Fig. 5: Molecular imaging of cardiomyocytes and immunometabolism in acute myocardial infarction.

Similar content being viewed by others

References

  1. Vilahur, G., Kleinbongard, P. & Zuurbier, C. In memoriam: Ioanna Andreadou (1965–2025). Eur. Heart J. 46, 1699–1701 (2025).

    Article  Google Scholar 

  2. Sattler, S., Campos Ramos, G., Ludewig, B. & Rainer, P. P. Cardioimmunology: the new frontier! Eur. Heart J. 44, 2355–2357 (2023).

    Article  PubMed  Google Scholar 

  3. Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Hilgendorf, I., Frantz, S. & Frangogiannis, N. G. Repair of the infarcted heart: cellular effectors, molecular mechanisms and therapeutic opportunities. Circ. Res. 134, 1718–1751 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vilahur, G. & Fuster, V. Interplay between platelets and coagulation: from protective haemostasis to pathological arterial thrombosis. Eur. Heart J. 46, 413–423 (2025).

    Article  CAS  PubMed  Google Scholar 

  6. Badimon, L. & Vilahur, G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med. 276, 618–632 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Castillo, E. C., Vazquez-Garza, E., Yee-Trejo, D., Garcia-Rivas, G. & Torre-Amione, G. What is the role of the inflammation in the pathogenesis of heart failure? Curr. Cardiol. Rep. 22, 139 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Myhre, P. L., Selvaraj, S. & Solomon, S. D. Management of hypertension in heart failure with preserved ejection fraction: is there a blood pressure goal? Curr. Opin. Cardiol. 36, 413–419 (2021).

    Article  PubMed  Google Scholar 

  9. Li, T. et al. Cardiac repair after myocardial infarction: a two-sided role of inflammation-mediated. Front. Cardiovasc. Med. 9, 1077290 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Vilahur, G. et al. Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction. J. Mol. Cell Cardiol. 50, 522–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Ramos-Regalado, L., Alcover, S., Badimon, L. & Vilahur, G. The influence of metabolic risk factors on the inflammatory response triggered by myocardial infarction: bridging pathophysiology to treatment. Cells 13, 1125 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119, 91–112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vilahur, G. et al. Short-term myocardial ischemia induces cardiac modified C-reactive protein expression and proinflammatory gene (cyclo-oxygenase-2, monocyte chemoattractant protein-1, and tissue factor) upregulation in peripheral blood mononuclear cells. J. Thromb. Haemost. 7, 485–493 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Caiati, C. & Jirillo, E. The immune system: an arrow to the heart and principles of cardioimmunology as an emerging branch of medicine. Curr. Vasc. Pharmacol. https://doi.org/10.2174/0115701611325234241202073459 (2025).

  15. DeBerge, M., Chaudhary, R., Schroth, S. & Thorp, E. B. Immunometabolism at the heart of cardiovascular disease. JACC Basic Transl. Sci. 8, 884–904 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schiattarella, G. G. et al. Immunometabolic mechanisms of heart failure with preserved ejection fraction. Nat. Cardiovasc. Res. 1, 211–222 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bajpai, A. & Tilley, D. G. The role of leukocytes in diabetic cardiomyopathy. Front. Physiol. 9, 1547 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zheng, Z. Q., Cai, D. H. & Song, Y. F. Identification of immune feature genes and intercellular profiles in diabetic cardiomyopathy. World J. Diabetes 15, 2093–2110 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhong, Z. et al. Identification and verification of immune-related biomarkers and immune infiltration in diabetic heart failure. Front. Cardiovasc. Med. 9, 931066 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bansal, S. S. et al. Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circ. Heart Fail. 10, e003688 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maisel, A. et al. Experimental autoimmune myocarditis produced by adoptive transfer of splenocytes after myocardial infarction. Circ. Res. 82, 458–463 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Antipenko, S. et al. Neutrophils are indispensable for adverse cardiac remodeling in heart failure. J. Mol. Cell Cardiol. 189, 1–11 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Adamo, L. et al. B cell-mediated antigen presentation promotes adverse cardiac remodeling in chronic heart failure. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-4536350/v1 (2024).

  24. Heusch, G. & Kleinbongard, P. The spleen in ischaemic heart disease. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-024-01114-x (2025).

  25. Bertero, E. et al. Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc. Res. 118, 37–52 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Martini, E. et al. Autoimmune-like mechanism in heart failure enables preventive vaccine therapy. Circ. Res. 136, 4–25 (2025).

    Article  CAS  PubMed  Google Scholar 

  27. Lovell, J. P. et al. B cell-mediated antigen presentation promotes adverse cardiac remodeling in chronic heart failure. Preprint at rs.3.rs-4536350 (2024).

  28. Kessler, E. L. et al. Immunomodulation in heart failure with preserved ejection fraction: current state and future perspectives. J. Cardiovasc. Transl. Res. 14, 63–74 (2021).

    Article  PubMed  Google Scholar 

  29. Cooper, G. The Cell: a Molecular Approach 2nd edn (Sinauer Associates, 2000).

  30. Soto-Heredero, G., Gomez de Las Heras, M. M., Gabande-Rodriguez, E., Oller, J. & Mittelbrunn, M. Glycolysis — a key player in the inflammatory response. FEBS J. 287, 3350–3369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, S. et al. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res. Cardiol. 118, 48 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Werbner, B. et al. Hypertension and obesity independently drive hypertrophy and alter mitochondrial metabolism in a mouse model of heart failure with preserved ejection fraction. Physiol. Rep. 12, e70072 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Andreadou, I. et al. PCSK9 in myocardial infarction and cardioprotection: importance of lipid metabolism and inflammation. Front. Physiol. 11, 602497 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hu, T. et al. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal. Transduct. Target. Ther. 9, 268 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Corcoran, S. E. & O’Neill, L. A. HIF1α and metabolic reprogramming in inflammation. J. Clin. Invest. 126, 3699–3707 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li, X. et al. Lactate metabolism in human health and disease. Signal. Transduct. Target. Ther. 7, 305 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sadiku, P. et al. Neutrophils fuel effective immune responses through gluconeogenesis and glycogenesis. Cell Metab. 33, 1062–1064 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Viola, A., Munari, F., Sanchez-Rodriguez, R., Scolaro, T. & Castegna, A. The metabolic signature of macrophage responses. Front. Immunol. 10, 1462 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yap, J. et al. Macrophages in cardiac remodelling after myocardial infarction. Nat. Rev. Cardiol. 20, 373–385 (2023).

    Article  PubMed  Google Scholar 

  40. Yang, S., Penna, V. & Lavine, K. J. Functional diversity of cardiac macrophages in health and disease. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-024-01109-8 (2025).

  41. Liao, Y. & Zhu, L. At the heart of inflammation: unravelling cardiac resident macrophage biology. J. Cell Mol. Med. 28, e70050 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, S. et al. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 29, 443–456 e445 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Batista-Gonzalez, A., Vidal, R., Criollo, A. & Carreno, L. J. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front. Immunol. 10, 2993 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. DeBerge, M. et al. Hypoxia-inducible factors individually facilitate inflammatory myeloid metabolism and inefficient cardiac repair. J. Exp. Med. 218, e20200667 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ouyang, C., Huang, J., Huang, G. & Wang, Y. Dendritic cell immunometabolism — a potential therapeutic target for allergic diseases. Int. J. Med. Sci. 22, 417–431 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sohn, H. & Cooper, M. A. Metabolic regulation of NK cell function: implications for immunotherapy. Immunometabolism 5, e00020 (2023).

    Article  PubMed  Google Scholar 

  47. Li, J. et al. Classification of regulatory T cells and their role in myocardial ischemia-reperfusion injury. J. Mol. Cell Cardiol. 186, 94–106 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Kumar, V., Narisawa, M. & Cheng, X. W. Overview of multifunctional Tregs in cardiovascular disease: from insights into cellular functions to clinical implications. FASEB J. 38, e23786 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Weirather, J. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Schnitter, F. et al. Characterizing the immune response to myocardial infarction in pigs. Basic Res. Cardiol. 119, 453–479 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gladow, N. et al. Role of CD4+ T-cells for regulating splenic myelopoiesis and monocyte differentiation after experimental myocardial infarction. Basic Res. Cardiol. 119, 261–275 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bansal, S. S. et al. Dysfunctional and proinflammatory regulatory T-lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy. Circulation 139, 206–221 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bantug, G. R., Galluzzi, L., Kroemer, G. & Hess, C. The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol. 18, 19–34 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Jiao, J. et al. Regulatory B cells improve ventricular remodeling after myocardial infarction by modulating monocyte migration. Basic Res. Cardiol. 116, 46 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu, Y. et al. Bone marrow-derived naive B lymphocytes improve heart function after myocardial infarction: a novel cardioprotective mechanism for empagliflozin. Basic Res. Cardiol. 117, 47 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Iperi, C., Bordron, A., Dueymes, M., Pers, J. O. & Jamin, C. Metabolic program of regulatory B lymphocytes and influence in the control of malignant and autoimmune situations. Front. Immunol. 12, 735463 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fu, Y., Wang, L., Yu, B., Xu, D. & Chu, Y. Immunometabolism shapes B cell fate and functions. Immunology 166, 444–457 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, X. et al. Immunomodulatory treatment strategies targeting B cells for heart failure. Front. Pharmacol. 13, 854592 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vicenzetto, C. et al. Cellular immunology of myocarditis: lights and shades — a literature review. Cells 13, 2082 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sagar, S., Liu, P. P. & Cooper, L. T. Jr Myocarditis. Lancet 379, 738–747 (2012).

    Article  PubMed  Google Scholar 

  61. Cooper, L. T. Jr. Myocarditis. N. Engl. J. Med. 360, 1526–1538 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Krych, S. et al. Viral myocarditis as a factor leading to the development of heart failure symptoms, including the role of parvovirus B19 infection-systematic review. Int. J. Mol. Sci. 25, 8127 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kleinbongard, P. & Heusch, G. A fresh look at coronary microembolization. Nat. Rev. Cardiol. 19, 265–280 (2022).

    Article  PubMed  Google Scholar 

  64. Martini, E. et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overload-driven heart failure reveals extent of immune activation. Circulation 140, 2089–2107 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Korf-Klingebiel, M. et al. Myeloid-derived growth factor protects against pressure overload-induced heart failure by preserving sarco/endoplasmic reticulum Ca2+-ATPase expression in cardiomyocytes. Circulation 144, 1227–1240 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Sintou, A. et al. Mediastinal lymphadenopathy, class-switched auto-antibodies and myocardial immune-complexes during heart failure in rodents and humans. Front. Cell Dev. Biol. 8, 695 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Boivin-Jahns, V., Jahns, R. & Boege, F. Relevant effects of beta1-adrenoceptor autoantibodies in chronic heart failure. Front. Biosci. 23, 2146–2156 (2018).

    Article  CAS  Google Scholar 

  68. Wang, C. & Luo, H. Crosstalk between innate immunity and autophagy in viral myocarditis leading to dilated cardiomyopathy. Rev. Med. Virol. 34, e2586 (2024).

    Article  CAS  PubMed  Google Scholar 

  69. Mamic, P., Snyder, M. & Tang, W. H. W. Gut microbiome-based management of patients with heart failure: JACC review topic of the week. J. Am. Coll. Cardiol. 81, 1729–1739 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Kominsky, D. J., Campbell, E. L. & Colgan, S. P. Metabolic shifts in immunity and inflammation. J. Immunol. 184, 4062–4068 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Ritterhoff, J. & Tian, R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat. Rev. Cardiol. 20, 812–829 (2023).

    Article  PubMed  Google Scholar 

  72. Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R. & Abel, E. D. Cardiac energy metabolism in heart failure. Circ. Res. 128, 1487–1513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sun, Q., Karwi, Q. G., Wong, N. & Lopaschuk, G. D. Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond. Cardiovasc. Res. 120, 1996–2016 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hinton, A. Jr. et al. Mitochondrial structure and function in human heart failure. Circ. Res. 135, 372–396 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nakayama, H. & Otsu, K. Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases. Biochem. J. 475, 839–852 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Marelli-Berg, F. M. & Aksentijevic, D. Immunometabolic cross-talk in the inflamed heart. Cell Stress 3, 240–266 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Omoto, A. C. M., do Carmo, J. M., da Silva, A. A., Hall, J. E. & Mouton, A. J. Immunometabolism, extracellular vesicles and cardiac injury. Front. Endocrinol. 14, 1331284 (2023).

    Article  Google Scholar 

  78. Plomgaard, P. et al. Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 54, 2939–2945 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Amit, U. et al. New role for interleukin-13 receptor α1 in myocardial homeostasis and heart failure. J. Am. Heart Assoc. 6, e005108 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Morioka, S. et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563, 714–718 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, K. et al. Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-kB activation via GPR81-mediated signaling. Front. Immunol. 11, 587913 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Quinn, W. J. 3rd et al. Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep. 33, 108500 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591, 645–651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rao, D. et al. Acidity-mediated induction of FoxP3+ regulatory T cells. Eur. J. Immunol. 53, e2250258 (2023).

    Article  PubMed  Google Scholar 

  85. Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293 e1287 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Martinov, V. et al. Increased expression of monocarboxylate transporter 1 after acute ischemia of isolated, perfused mouse hearts. Life Sci. 85, 379–385 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Du, J. et al. A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration. Cell Stem Cell 29, 545–558 e513 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Prag, H. A. et al. Mechanism of succinate efflux upon reperfusion of the ischaemic heart. Cardiovasc. Res. 117, 1188–1201 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Krzak, G., Willis, C. M., Smith, J. A., Pluchino, S. & Peruzzotti-Jametti, L. Succinate receptor 1: an emerging regulator of myeloid cell function in inflammation. Trends Immunol. 42, 45–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Fremder, M. et al. A transepithelial pathway delivers succinate to macrophages, thus perpetuating their pro-inflammatory metabolic state. Cell Rep. 36, 109521 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470 e413 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gudgeon, N. et al. Succinate uptake by T cells suppresses their effector function via inhibition of mitochondrial glucose oxidation. Cell Rep. 40, 111193 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Prag, H. A. et al. Ischemia-selective cardioprotection by malonate for ischemia/reperfusion injury. Circ. Res. 131, 528–541 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Abe, J., Vujic, A., Prag, H. A., Murphy, M. P. & Krieg, T. Malonate given at reperfusion prevents post-myocardial infarction heart failure by decreasing ischemia/reperfusion injury. Basic Res. Cardiol. 119, 691–697 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Panico, C. et al. Single-cell RNA sequencing reveals metabolic stress-dependent activation of cardiac macrophages in a model of dyslipidemia-induced diastolic dysfunction. Circulation 150, 1517–1532 (2024).

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, K. et al. TREM2hi resident macrophages protect the septic heart by maintaining cardiomyocyte homeostasis. Nat. Metab. 5, 129–146 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Del Campo, A., Perez, G., Castro, P. F., Parra, V. & Verdejo, H. E. Mitochondrial function, dynamics and quality control in the pathophysiology of HFpEF. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166208 (2021).

    Article  PubMed  Google Scholar 

  100. Frangogiannis, N. G. Targeting macrophage-fibroblast interactions in the failing heart. Nat. Rev. Cardiol. 22, 223–224 (2024).

    Article  Google Scholar 

  101. Alexanian, M. et al. Chromatin remodelling drives immune cell-fibroblast communication in heart failure. Nature 635, 434–443 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Amrute, J. M. et al. Targeting immune-fibroblast cell communication in heart failure. Nature 635, 423–433 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lanzer, J. D. et al. Single-cell transcriptomics reveal distinctive patterns of fibroblast activation in heart failure with preserved ejection fraction. Basic Res. Cardiol. 119, 1001–1028 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lazaropoulos, M. P. et al. Nuclear ATP-citrate lyase regulates chromatin-dependent activation and maintenance of the myofibroblast gene program. Nat. Cardiovasc. Res. 3, 869–882 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Aryal, B., Price, N. L., Suarez, Y. & Fernandez-Hernando, C. ANGPTL4 in metabolic and cardiovascular disease. Trends Mol. Med. 25, 723–734 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kanemaru, K. et al. Spatially resolved multiomics of human cardiac niches. Nature 619, 801–810 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Goldman, S. A. et al. Uncovering the role of epicardial adipose tissue in heart failure with preserved ejection fraction. JACC Adv. 2, 100657 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Badimon, L. et al. Extracellular vesicles in atherothrombosis: from biomarkers and precision medicine to therapeutic targets. Immunol. Rev. 312, 6–19 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shaihov-Teper, O. et al. Extracellular vesicles from epicardial fat facilitate atrial fibrillation. Circulation 143, 2475–2493 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Garcia, N. A., Moncayo-Arlandi, J., Sepulveda, P. & Diez-Juan, A. Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc. Res. 109, 397–408 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Montuoro, S., Gentile, F. & Giannoni, A. Neuroimmune cross-talk in heart failure. Cardiovasc. Res. 5, cvae236 (2024).

    Google Scholar 

  113. Huynh, P. et al. Myocardial infarction augments sleep to limit cardiac inflammation and damage. Nature 635, 168–177 (2024).

    Article  CAS  PubMed  Google Scholar 

  114. Glinton, K. et al. Leukocyte–lymphatic intersections during cardiac inflammation. J. Mol. Cell Cardiol. 198, 13–20 (2025).

    Article  CAS  PubMed  Google Scholar 

  115. Houssari, M. et al. Lymphatic and immune cell cross-talk regulates cardiac recovery after experimental myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 40, 1722–1737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Heron, C. et al. Regulation and impact of cardiac lymphangiogenesis in pressure-overload-induced heart failure. Cardiovasc. Res. 119, 492–505 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Huang, Y. et al. Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAFlux. Nat. Commun. 14, 4883 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mouton, A. J. & Hall, J. E. Novel roles of immunometabolism and nonmyocyte metabolism in cardiac remodeling and injury. Am. J. Physiol. Regul. Integr. Comp. Physiol 319, R476–R484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Swirski, F. K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161–166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sano, S. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 71, 875–886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Poller, W. C., Nahrendorf, M. & Swirski, F. K. Hematopoiesis and cardiovascular disease. Circ. Res. 126, 1061–1085 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  125. Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dougan, M., Dranoff, G. & Dougan, S. K. GM-CSF, IL-3, and IL-5 family of cytokines: regulators of inflammation. Immunity 50, 796–811 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Mindur, J. E. & Swirski, F. K. Growth factors as immunotherapeutic targets in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 39, 1275–1287 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Higgins, J. M. & Mahadevan, L. Physiological and pathological population dynamics of circulating human red blood cells. Proc. Natl Acad. Sci. USA 107, 20587–20592 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, S. et al. Bone marrow adipocytes fuel emergency hematopoiesis after myocardial infarction. Nat. Cardiovasc. Res. 2, 1277–1290 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Murphy, A. J. et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J. Clin. Invest. 121, 4138–4149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Weiss, G. & Goodnough, L. T. Anemia of chronic disease. N. Engl. J. Med. 352, 1011–1023 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Loncar, G., Obradovic, D., Thiele, H., von Haehling, S. & Lainscak, M. Iron deficiency in heart failure. ESC. Heart Fail. 8, 2368–2379 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zouggari, Y. et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. 19, 1273–1280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ratajczak, M. Z., Adamiak, M., Plonka, M., Abdel-Latif, A. & Ratajczak, J. Mobilization of hematopoietic stem cells as a result of innate immunity-mediated sterile inflammation in the bone marrow microenvironment-the involvement of extracellular nucleotides and purinergic signaling. Leukemia 32, 1116–1123 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Collins, N. et al. The bone marrow protects and optimizes immunological memory during dietary restriction. Cell 178, 1088–1101 e1015 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Janssen, H. et al. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity 56, 783–796 e787 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mendez-Ferrer, S., Chow, A., Merad, M. & Frenette, P. S. Circadian rhythms influence hematopoietic stem cells. Curr. Opin. Hematol. 16, 235–242 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mendez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P. S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Garcia-Garcia, A. et al. Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes. Blood 133, 224–236 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. He, W. et al. Circadian expression of migratory factors establishes lineage-specific signatures that guide the homing of leukocyte subsets to tissues. Immunity 49, 1175–1190 e1177 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Scheiermann, C. et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37, 290–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Maryanovich, M., Takeishi, S. & Frenette, P. S. Neural regulation of bone and bone marrow. Cold Spring Harb. Perspect. Med. 8, a031344 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Pittet, M. J., Nahrendorf, M. & Swirski, F. K. The journey from stem cell to macrophage. Ann. N. Y. Acad. Sci. 1319, 1–18 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Oren, O., Small, A. M. & Libby, P. Clonal hematopoiesis and atherosclerosis. J. Clin. Invest. 134, e180066 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Heyde, A. et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184, 1348–1361 e1322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. McAlpine, C. S. et al. Sleep exerts lasting effects on hematopoietic stem cell function and diversity. J. Exp. Med. 219, e20220081 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Marston, N. A. et al. Clonal hematopoiesis, cardiovascular events and treatment benefit in 63,700 individuals from five TIMI randomized trials. Nat. Med. 30, 2641–2647 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chavkin, N. W., Min, K. D. & Walsh, K. Importance of clonal hematopoiesis in heart failure. Trends Cardiovasc. Med. 32, 198–203 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Cochran, J. D. et al. Clonal hematopoiesis in clinical and experimental heart failure with preserved ejection fraction. Circulation 148, 1165–1178 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Crean, P. A. et al. The fractional distribution of the cardiac output in man using microspheres labelled with technetium 99m. Br. J. Radiol. 59, 209–215 (1986).

    Article  CAS  PubMed  Google Scholar 

  159. Li, H. et al. Biomechanics of phagocytosis of red blood cells by macrophages in the human spleen. Proc. Natl Acad. Sci. USA 121, e2414437121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hiraiwa, H., Yura, Y., Okumura, T. & Murohara, T. Interplay of the heart, spleen, and bone marrow in heart failure: the role of splenic extramedullary hematopoiesis. Heart Fail. Rev. 29, 1049–1063 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Packer, M. et al. Identification of three mechanistic pathways for iron-deficient heart failure. Eur. Heart J. 45, 2281–2293 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bonner, F. et al. Regional analysis of inflammation and contractile function in reperfused acute myocardial infarction by in vivo (19)F cardiovascular magnetic resonance in pigs. Basic Res. Cardiol. 117, 21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Lieder, H. R. et al. Vago-splenic axis in signal transduction of remote ischemic preconditioning in pigs and rats. Circ. Res. 123, 1152–1163 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lieder, H. et al. Vago-splenic signal transduction of cardioprotection in humans. Eur. Heart J. 45, 3164–3177 (2024).

    Article  CAS  PubMed  Google Scholar 

  166. Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209, 123–137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gao, X. M. et al. Splenic release of platelets contributes to increased circulating platelet size and inflammation after myocardial infarction. Clin. Sci. 130, 1089–1104 (2016).

    Article  CAS  Google Scholar 

  168. Tomczyk, M. et al. Splenic Ly6Chi monocytes contribute to adverse late post-ischemic left ventricular remodeling in heme oxygenase-1 deficient mice. Basic Res. Cardiol. 112, 39 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Ismahil, M. A. et al. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ. Res. 114, 266–282 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Prabhu, S. D. The cardiosplenic axis is essential for the pathogenesis of ischemic heart failure. Trans. Am. Clin. Climatol. Assoc. 129, 202–214 (2018).

    PubMed  PubMed Central  Google Scholar 

  171. Leuschner, F. et al. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ. Res. 107, 1364–1373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Aker, S. et al. Serum but not myocardial TNF-α concentration is increased in pacing-induced heart failure in rabbits. Am. J. Physiol. Regul. Integr. Comp. Physiol 285, R463–R469 (2003).

    Article  CAS  PubMed  Google Scholar 

  173. Borger, J. et al. Myocardial inflammation is associated with impaired mitochondrial oxidative capacity in ischaemic cardiomyopathy. ESC Heart Fail. 12, 1246–1255 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Padro, T., Vilahur, G. & Badimon, L. Dyslipidemias and microcirculation. Curr. Pharm. Des. 24, 2921–2926 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Al-Sharea, A. et al. Nicotinic acetylcholine receptor alpha 7 stimulation dampens splenic myelopoiesis and inhibits atherogenesis in Apoe−/− mice. Atherosclerosis 265, 47–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Yan, C., Li, Y. Z., Luo, X. M., Quan, X. J. & Feng, Y. M. Roles of hematopoietic stem and progenitor cells in ischemic cardiovascular disease. Curr. Stem Cell Res. Ther. 16, 589–598 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Potteaux, S., Ait-Oufella, H. & Mallat, Z. Role of splenic monocytes in atherosclerosis. Curr. Opin. Lipidol. 26, 457–463 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Fernandez-Garcia, V., Gonzalez-Ramos, S., Martin-Sanz, P., Castrillo, A. & Bosca, L. Contribution of extramedullary hematopoiesis to atherosclerosis. The spleen as a neglected hub of inflammatory cells. Front. Immunol. 11, 586527 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Asai, K., Kuzuya, M., Naito, M., Funaki, C. & Kuzuya, F. Effects of splenectomy on serum lipids and experimental atherosclerosis. Angiology 39, 497–504 (1988).

    Article  CAS  PubMed  Google Scholar 

  180. Ai, X. M. et al. The role of splenectomy in lipid metabolism and atherosclerosis (AS). Lipids Health Dis. 17, 186 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Lee, W. W. et al. PET/MRI of inflammation in myocardial infarction. J. Am. Coll. Cardiol. 59, 153–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Rischpler, C. et al. Prospective evaluation of 18F-fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ. Cardiovasc. Imaging 9, e004316 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Wollenweber, T. et al. Characterizing the inflammatory tissue response to acute myocardial infarction by clinical multimodality noninvasive imaging. Circ. Cardiovasc. Imaging 7, 811–818 (2014).

    Article  PubMed  Google Scholar 

  184. Kim, E. J., Kim, S., Kang, D. O. & Seo, H. S. Metabolic activity of the spleen and bone marrow in patients with acute myocardial infarction evaluated by 18F-fluorodeoxyglucose positron emission tomograpic imaging. Circ. Cardiovasc. Imaging 7, 454–460 (2014).

    Article  PubMed  Google Scholar 

  185. Emami, H. et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 8, 121–130 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Hiraiwa, H. et al. Splenic size as an indicator of hemodynamics and prognosis in patients with heart failure. Heart Vessels 37, 1344–1355 (2022).

    Article  PubMed  Google Scholar 

  187. Maeda, D. et al. Splenic volume index determined using computed tomography upon admission is associated with readmission for heart failure among patients with acute decompensated heart failure. Int. Heart J. 62, 584–591 (2021).

    Article  PubMed  Google Scholar 

  188. Thackeray, J. T., Bankstahl, J. P., Wang, Y., Wollert, K. C. & Bengel, F. M. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for 18F-FDG imaging of myocardial inflammation in mice. Eur. J. Nucl. Med. Mol. Imaging 42, 771–780 (2015).

    Article  CAS  PubMed  Google Scholar 

  189. Glasenapp, A. et al. Multimodality imaging of inflammation and ventricular remodeling in pressure-overload heart failure. J. Nucl. Med. 61, 590–596 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bengel, F. M., Permanetter, B., Ungerer, M., Nekolla, S. & Schwaiger, M. Non-invasive estimation of myocardial efficiency using positron emission tomography and carbon-11 acetate-comparison between the normal and failing human heart. Eur. J. Nucl. Med. 27, 319–326 (2000).

    Article  CAS  PubMed  Google Scholar 

  191. Borchert, T. et al. Dissecting the target leukocyte subpopulations of clinically relevant inflammation radiopharmaceuticals. J. Nucl. Cardiol. 28, 1636–1645 (2021).

    Article  PubMed  Google Scholar 

  192. Lapa, C. et al. Imaging of myocardial inflammation with somatostatin receptor based PET/CT — a comparison to cardiac MRI. Int. J. Cardiol. 194, 44–49 (2015).

    Article  PubMed  Google Scholar 

  193. Thackeray, J. T. et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J. Am. Coll. Cardiol. 71, 263–275 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Thackeray, J. T. et al. Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc. Imaging 8, 1417–1426 (2015).

    Article  PubMed  Google Scholar 

  195. Hess, A. et al. Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. Eur. Heart J. 41, 3564–3575 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Werner, R. A. et al. CXCR4-targeted imaging of post-infarct myocardial tissue inflammation: prognostic value after reperfused myocardial infarction. JACC Cardiovasc. Imaging 15, 372–374 (2022).

    Article  PubMed  Google Scholar 

  197. Heo, G. S. et al. Molecular imaging visualizes recruitment of inflammatory mocytes and macrophages to the injured heart. Circ. Res. 124, 881–890 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Glasenapp, A. et al. Molecular imaging of inflammation and fibrosis in pressure overload heart failure. Circ. Res. 129, 369–382 (2021).

    Article  CAS  PubMed  Google Scholar 

  199. Werner, R. A. et al. Longitudinal 18F-FDG PET imaging in a rat model of autoimmune myocarditis. Eur. Heart J. Cardiovasc. Imaging 20, 467–474 (2019).

    Article  PubMed  Google Scholar 

  200. Writing, C. et al. 2024 ACC expert consensus decision pathway on strategies and criteria for the diagnosis and management of myocarditis: a report of the American College of Cardiology solution set oversight committee. J. Am. Coll. Cardiol. 85, 391–431 (2024).

    Google Scholar 

  201. Lagan, J. et al. Substrate for the myocardial inflammation-heart failure hypothesis identified using novel USPIO methodology. JACC Cardiovasc. Imaging 14, 365–376 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Joergensen, S. H. et al. Hyperpolarized [1-(13)C]pyruvate cardiovascular magnetic resonance imaging identifies metabolic phenotypes in patients with heart failure. J. Cardiovasc. Magn. Reson. 26, 101095 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Fuetterer, M. et al. Hyperpolarized metabolic and parametric CMR imaging of longitudinal metabolic–structural changes in experimental chronic infarction. JACC Cardiovasc. Imaging 15, 2051–2064 (2022).

    Article  PubMed  Google Scholar 

  204. Wang, Y. et al. C-X-C motif chemokine receptor 4 blockade promotes tissue repair after myocardial infarction by enhancing regulatory T cell mobilization and immune-regulatory function. Circulation 139, 1798–1812 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Jujo, K. et al. CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc. Natl Acad. Sci. USA 107, 11008–11013 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Polidori, T. et al. Radiomics applications in cardiac imaging: a comprehensive review. Radiol. Med. 128, 922–933 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Levine, B., Kalman, J., Mayer, L., Fillit, H. M. & Packer, M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 323, 236–241 (1990).

    Article  CAS  PubMed  Google Scholar 

  208. Oral, H., Dorn, G. W. 2nd & Mann, D. L. Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian cardiac myocyte. J. Biol. Chem. 272, 4836–4842 (1997).

    Article  CAS  PubMed  Google Scholar 

  209. Yokoyama, T. et al. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J. Clin. Invest. 92, 2303–2312 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Deswal, A. et al. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation 99, 3224–3226 (1999).

    Article  CAS  PubMed  Google Scholar 

  211. Torre-Amione, G. et al. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93, 704–711 (1996).

    Article  CAS  PubMed  Google Scholar 

  212. Kapadia, S., Torre-Amione, G., Yokoyama, T. & Mann, D. L. Soluble TNF binding proteins modulate the negative inotropic properties of TNF-α in vitro. Am. J. Physiol. 268, H517–H525 (1995).

    CAS  PubMed  Google Scholar 

  213. Kleinbongard, P., Schulz, R. & Heusch, G. TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail. Rev. 16, 49–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  214. Papamichail, A. et al. Targeting key inflammatory mechanisms underlying heart failure: a comprehensive review. Int. J. Mol. Sci. 25, 5–10 (2023).

    Article  Google Scholar 

  215. Hamid, T. et al. Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kB and inflammatory activation. Circulation 119, 1386–1397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Diamantopoulos, A. P., Larsen, A. I. & Omdal, R. Is it safe to use TNF-α blockers for systemic inflammatory disease in patients with heart failure? Importance of dosage and receptor specificity. Int. J. Cardiol. 167, 1719–1723 (2013).

    Article  PubMed  Google Scholar 

  217. Schulz, R. & Heusch, G. Tumor necrosis factor-α and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation 119, 1355–1357 (2009).

    Article  PubMed  Google Scholar 

  218. Javed, Q. & Murtaza, I. Therapeutic potential of tumour necrosis factor-alpha antagonists in patients with chronic heart failure. Heart Lung Circ. 22, 323–327 (2013).

    Article  PubMed  Google Scholar 

  219. Chung, E. S. et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation 107, 3133–3140 (2003).

    Article  CAS  PubMed  Google Scholar 

  220. Mann, D. L. et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the randomized etanercept worldwide evaluation (RENEWAL). Circulation 109, 1594–1602 (2004).

    Article  CAS  PubMed  Google Scholar 

  221. Deng, H. W. et al. The role of glucocorticoids in increasing cardiovascular risk. Front. Cardiovasc. Med. 10, 1187100 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Brook, R. D. et al. Cardiovascular outcomes with an inhaled beta2-agonist/corticosteroid in patients with COPD at high cardiovascular risk. Heart 103, 1536–1542 (2017).

    Article  CAS  PubMed  Google Scholar 

  223. Costello, R. E., Yimer, B. B., Roads, P., Jani, M. & Dixon, W. G. Glucocorticoid use is associated with an increased risk of hypertension. Rheumatology 60, 132–139 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Skyschally, A. et al. Glucocorticoid treatment prevents progressive myocardial dysfunction resulting from experimental coronary microembolization. Circulation 109, 2337–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  225. Frustaci, A., Russo, M. A. & Chimenti, C. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur. Heart J. 30, 1995–2002 (2009).

    Article  CAS  PubMed  Google Scholar 

  226. Chimenti, C., Russo, M. A. & Frustaci, A. Immunosuppressive therapy in virus-negative inflammatory cardiomyopathy: 20-year follow-up of the TIMIC trial. Eur. Heart J. 43, 3463–3473 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Parrillo, J. E. et al. A prospective, randomized, controlled trial of prednisone for dilated cardiomyopathy. N. Engl. J. Med. 321, 1061–1068 (1989).

    Article  CAS  PubMed  Google Scholar 

  228. Imazio, M. & Nidorf, M. Colchicine and the heart. Eur. Heart J. 42, 2745–2760 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article  CAS  PubMed  Google Scholar 

  230. Deftereos, S. et al. Anti-inflammatory treatment with colchicine in stable chronic heart failure: a prospective, randomized study. JACC Heart Fail. 2, 131–137 (2014).

    Article  PubMed  Google Scholar 

  231. Pascual-Figal, D. et al. Colchicine in acute heart failure: rationale and design of a randomized double-blind placebo-controlled trial (COLICA). Eur. J. Heart Fail. 26, 1999–2007 (2024).

    CAS  PubMed  Google Scholar 

  232. Pascual-Figal, D. et al. Colchicine in acutely decompensated heart failure: the COLICA trial. Eur. Heart J. 45, 4826–4836 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Chiu, B., Jantuan, E., Shen, F., Chiu, B. & Sergi, C. Autophagy-inflammasome interplay in heart failure: a systematic review on basics, pathways, and therapeutic perspectives. Ann. Clin. Lab. Sci. 47, 243–252 (2017).

    CAS  PubMed  Google Scholar 

  234. Abbate, A. et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ. Res. 126, 1260–1280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for Atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  236. Febbraio, M. A. Role of interleukins in obesity: implications for metabolic disease. Trends Endocrinol. Metab. 25, 312–319 (2014).

    Article  CAS  PubMed  Google Scholar 

  237. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139, 1289–1299 (2019).

    Article  CAS  PubMed  Google Scholar 

  238. Adamo, L., Rocha-Resende, C., Prabhu, S. D. & Mann, D. L. Reappraising the role of inflammation in heart failure. Nat. Rev. Cardiol. 17, 269–285 (2020).

    Article  PubMed  Google Scholar 

  239. Svensson, E. C. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521–528 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Heusch, G. & Kleinbongard, P. The enigmata of cardioprotection with SGLT2 inhibition. JACC Basic Transl. Sci. 10, 62–64 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Khiali, S., Taban-Sadeghi, M., Sarbakhsh, P., Khezerlouy-Aghdam, N. & Entezari-Maleki, T. Empagliflozin and colchicine in patients with reduced left ventricular ejection fraction following ST-elevation myocardial infarction: a randomized, double-blinded, three-arm parallel-group, controlled trial. Eur. J. Clin. Pharmacol. 80, 93–104 (2024).

    Article  CAS  PubMed  Google Scholar 

  242. Selvaraj, S. et al. Metabolic effects of the SGLT2 inhibitor dapagliflozin in heart failure across the spectrum of ejection fraction. Circ. Heart Fail. 17, e011980 (2024).

    Article  CAS  PubMed  Google Scholar 

  243. Byrne, N. J. et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circ. Heart Fail. 13, e006277 (2020).

    Article  CAS  PubMed  Google Scholar 

  244. Kim, S. R. et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun. 11, 2127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Tullius, S. G. et al. NAD+ protects against EAE by regulating CD4+ T-cell differentiation. Nat. Commun. 5, 5101 (2014).

    Article  CAS  PubMed  Google Scholar 

  246. Tong, D. et al. NAD+ repletion reverses heart failure with preserved ejection fraction. Circ. Res. 128, 1629–1641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Liu, Y. P., Wen, R., Liu, C. F., Zhang, T. N. & Yang, N. Cellular and molecular biology of sirtuins in cardiovascular disease. Biomed. Pharmacother. 164, 114931 (2023).

    Article  CAS  PubMed  Google Scholar 

  248. Tanno, M., Kuno, A., Horio, Y. & Miura, T. Emerging beneficial roles of sirtuins in heart failure. Basic Res. Cardiol. 107, 273 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Xu, C. Q. et al. Sirtuins in macrophage immune metabolism: a novel target for cardiovascular disorders. Int. J. Biol. Macromol. 256, 128270 (2024).

    Article  CAS  PubMed  Google Scholar 

  250. Park, S. Y. et al. SIRT1 inhibits differentiation of monocytes to macrophages: amelioration of synovial inflammation in rheumatoid arthritis. J. Mol. Med. 94, 921–931 (2016).

    Article  CAS  PubMed  Google Scholar 

  251. Ciarlo, E. et al. Sirtuin 2 deficiency increases bacterial phagocytosis by macrophages and protects from chronic staphylococcal infection. Front. Immunol. 8, 1037 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Liu, P. et al. Sirtuin 3-induced macrophage autophagy in regulating NLRP3 inflammasome activation. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 764–777 (2018).

    Article  CAS  PubMed  Google Scholar 

  253. Woo, S. J. et al. Myeloid sirtuin 6 deficiency accelerates experimental rheumatoid arthritis by enhancing macrophage activation and infiltration into synovium. EBioMedicine 38, 228–237 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Pham, Q. H. et al. Daily oral administration of probiotics engineered to constantly secrete short-chain fatty acids effectively prevents myocardial injury from subsequent ischaemic heart disease. Cardiovasc. Res. 120, 1737–1751 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Wang, A., Li, Z., Sun, Z., Zhang, D. & Ma, X. Gut-derived short-chain fatty acids bridge cardiac and systemic metabolism and immunity in heart failure. J. Nutr. Biochem. 120, 109370 (2023).

    Article  CAS  PubMed  Google Scholar 

  257. Zhao, P., Zhao, S., Tian, J. & Liu, X. Significance of gut microbiota and short-chain fatty acids in heart failure. Nutrients 14, 3758 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Heusch, G. et al. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol. 67, 102894 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Mouton, A. J. et al. Dimethyl fumarate preserves left ventricular infarct integrity following myocardial infarction via modulation of cardiac macrophage and fibroblast oxidative metabolism. J. Mol. Cell Cardiol. 158, 38–48 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Kornberg, M. D. et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 360, 449–453 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Hofmann, U. et al. Interleukin-13 deficiency aggravates healing and remodeling in male mice after experimental myocardial infarction. Circ. Heart Fail. 7, 822–830 (2014).

    Article  CAS  PubMed  Google Scholar 

  262. Alvarez-Argote, S. et al. IL-13 promotes functional recovery after myocardial infarction via direct signaling to macrophages. JCI Insight 9, e172702 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Palsson-McDermott, E. M. & O’Neill, L. A. J. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 30, 300–314 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Varani, K. et al. A2A and A3 adenosine receptor expression in rheumatoid arthritis: upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res. Ther. 13, R197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Glaesener, S. et al. Distinct effects of methotrexate and etanercept on the B cell compartment in patients with juvenile idiopathic arthritis. Arthritis Rheumatol. 66, 2590–2600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Mangoni, A. A. et al. Methotrexate and cardiovascular prevention: an appraisal of the current evidence. Ther. Adv. Cardiovasc. Dis. 17, 17539447231215213 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Moreira, D. M., Vieira, J. L. & Gottschall, C. A. The effects of methotrexate therapy on the physical capacity of patients with ischemic heart failure: a randomized double-blind, placebo-controlled trial (METIS trial). J. Card. Fail. 15, 828–834 (2009).

    Article  CAS  PubMed  Google Scholar 

  268. Balakumar, P. & Singh, M. Anti-tumour necrosis factor-alpha therapy in heart failure: future directions. Basic Clin. Pharmacol. Toxicol. 99, 391–397 (2006).

    Article  CAS  PubMed  Google Scholar 

  269. Van Tassell, B. W. et al. Interleukin-1 blockade in acute decompensated heart failure: a randomized, double-blinded, placebo-controlled pilot study. J. Cardiovasc. Pharmacol. 67, 544–551 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Van Tassell, B. W. et al. Interleukin-1 blockade in recently decompensated systolic heart failure: results from REDHART (recently decompensated heart failure anakinra response trial). Circ. Heart Fail. 10, e004373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Trankle, C. R. et al. Usefulness of canakinumab to improve exercise capacity in patients with long-term systolic heart failure and elevated C-reactive protein. Am. J. Cardiol. 122, 1366–1370 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Costanza, A. C., Moscavitch, S. D., Faria Neto, H. C. & Mesquita, E. T. Probiotic therapy with Saccharomyces boulardii for heart failure patients: a randomized, double-blind, placebo-controlled pilot trial. Int. J. Cardiol. 179, 348–350 (2015).

    Article  PubMed  Google Scholar 

  273. Awoyemi, A. et al. Rifaximin or Saccharomyces boulardii in heart failure with reduced ejection fraction: results from the randomized GutHeart trial. EBioMedicine 70, 103511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Pei, Z. et al. Effects of nicotinamide adenine dinucleotide on older patients with heart failure. Rev. Cardiovasc. Med. 25, 297 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Bozkurt, B. et al. Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation 103, 1044–1047 (2001).

    Article  CAS  PubMed  Google Scholar 

  276. Coletta, A. P., Clark, A. L., Banarjee, P. & Cleland, J. G. Clinical trials update: renewal (RENAISSANCE and RECOVER) and ATTACH. Eur. J. Heart Fail. 4, 559–561 (2002).

    Article  CAS  PubMed  Google Scholar 

  277. Gal, R. et al. Resveratrol improves heart function by moderating inflammatory processes in patients with systolic heart failure. Antioxidants 9, 1108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Van Tassell, B. W. et al. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am. J. Cardiol. 113, 321–327 (2014).

    Article  PubMed  Google Scholar 

  279. Van Tassell, B. W. et al. IL-1 blockade in patients with heart failure with preserved ejection fraction. Circ. Heart Fail. 11, e005036 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Lam, C. S. P. et al. Myeloperoxidase inhibition in heart failure with preserved or mildly reduced ejection fraction: SATELLITE trial results. J. Card. Fail. 30, 104–110 (2024).

    Article  PubMed  Google Scholar 

  281. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06062966 (2025).

  282. Van Tassell, B. et al. Rationale and design of interleukin-1 blockade in recently decompensated heart failure (REDHART2): a randomized, double blind, placebo controlled, single center, phase 2 study. J. Transl. Med. 20, 270 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  283. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03797001 (2024).

  284. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05873881 (2024).

  285. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06286423 (2024).

  286. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06217120 (2024).

  287. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06200207. (2025).

  288. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05636176 (2025).

  289. Lund, L. H. et al. Rationale and design of ENDEAVOR: a sequential phase 2b-3 randomized clinical trial to evaluate the effect of myeloperoxidase inhibition on symptoms and exercise capacity in heart failure with preserved or mildly reduced ejection fraction. Eur. J. Heart Fail. 25, 1696–1707 (2023).

    Article  CAS  PubMed  Google Scholar 

  290. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04986202 (2024).

  291. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06081049 (2024).

  292. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06130059 (2025).

  293. Onodi, Z. et al. AIM2-driven inflammasome activation in heart failure. Cardiovasc. Res. 117, 2639–2651 (2021).

    CAS  PubMed  Google Scholar 

  294. Deng, Y. et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF. Circ. Res. 128, 232–245 (2021).

    Article  CAS  PubMed  Google Scholar 

  295. Sano, S. et al. JAK2 (V617F)-mediated clonal hematopoiesis accelerates pathological remodeling in murine heart failure. JACC Basic Transl. Sci. 4, 684–697 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Heinrichs, M. et al. The healing myocardium mobilizes a distinct B-cell subset through a CXCL13–CXCR5-dependent mechanism. Cardiovasc. Res. 117, 2664–2676 (2021).

    CAS  PubMed  Google Scholar 

  297. Harouki, N. et al. The IL-1β antibody gevokizumab limits cardiac remodeling and coronary dysfunction in rats with heart failure. JACC BasicTransl. Sci. 2, 418–430 (2017).

    Google Scholar 

  298. Nakkala, J. R. et al. Dimethyl itaconate-loaded nanofibers rewrite macrophage polarization, reduce inflammation, and enhance repair of myocardic infarction. Small 17, e2006992 (2021).

    Article  PubMed  Google Scholar 

  299. Louwe, M. C. et al. Absence of NLRP3 inflammasome in hematopoietic cells reduces adverse remodeling after experimental myocardial infarction. JACC Basic Transl. Sci. 5, 1210–1224 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Byrne, N. J. et al. Chronically elevating circulating ketones can reduce cardiac inflammation and blunt the development of heart failure. Circ. Heart Fail. 13, e006573 (2020).

    Article  CAS  PubMed  Google Scholar 

  301. Zhang, L. et al. Resveratrol ameliorates cardiac remodeling in a murine model of heart failure with preserved ejection fraction. Front. Pharmacol. 12, 646240 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Fu, Y. et al. Anthelmintic niclosamide attenuates pressure-overload induced heart failure in mice. Eur. J. Pharmacol. 912, 174614 (2021).

    Article  CAS  PubMed  Google Scholar 

  303. Lukovic, D. et al. Increased [18F]FDG uptake in the infarcted myocardial area displayed by combined PET/CMR correlates with snRNA-seq-detected inflammatory cell invasion. Basic Res. Cardiol. 119, 807–829 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Lewis, A. J. M. et al. Noninvasive immunometabolic cardiac inflammation imaging using hyperpolarized magnetic resonance. Circ. Res. 122, 1084–1093 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Stone, K. D., Prussin, C. & Metcalfe, D. D. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 125, S73–S80 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Audiger, C., Rahman, M. J., Yun, T. J., Tarbell, K. V. & Lesage, S. The importance of dendritic cells in maintaining immune tolerance. J. Immunol. 198, 2223–2231 (2017).

    Article  CAS  PubMed  Google Scholar 

  308. Van der Borght, K. et al. Myocarditis elicits dendritic cell and monocyte infiltration in the heart and self-antigen presentation by conventional type 2 dendritic cells. Front. Immunol. 9, 2714 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Yang, W. et al. Innate lymphoid cells and myocardial infarction. Front. Immunol. 12, 758272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Jin, J., Jiang, Y., Chakrabarti, S. & Su, Z. Cardiac mast cells: a two-head regulator in cardiac homeostasis and pathogenesis following injury. Front. Immunol. 13, 963444 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Blanton, R. M., Carrillo-Salinas, F. J. & Alcaide, P. T-cell recruitment to the heart: friendly guests or unwelcome visitors? Am. J. Physiol. Heart Circ. Physiol 317, H124–H140 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Wang, X. et al. Targeting regulatory T cells for cardiovascular diseases. Front. Immunol. 14, 1126761 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Xia, N. et al. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation 142, 1956–1973 (2020).

    Article  CAS  PubMed  Google Scholar 

  314. Garcia-Rivas, G. et al. The role of B cells in heart failure and implications for future immunomodulatory treatment strategies. ESC Heart Fail. 7, 1387–1399 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Aziz, M., Holodick, N. E., Rothstein, T. L. & Wang, P. The role of B-1 cells in inflammation. Immunol. Res. 63, 153–166 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article is based on work from COST Action EU-METAHEART (CA22169) supported by COST (European Cooperation in Science and Technology). Ι.Α. and P.-E.N. were supported by the 2nd Call for Hellenic Foundation for Research and Innovation (H.F.R.I.) Research Projects to Support Faculty Members and Researchers ‘ElucidatioN of LIGHt chain amyloidosis induced cardioToxicity: EstablishMENT of in vitro and in vivo models’ (ENLIGHTEnMENT). A.G. was supported by the Italian Ministry of Health (GR-2021-12371950) and Italian Ministry of Education, Universities and Research (PRIN 2022 20223YPL49 and PRIN PNRR 2022 P2022ZB72T). J.T.T. was supported by the German Research Foundation (Heisenberg Programme TH2161/3-1) and Fondation Leducq (Transatlantic Network ImmunoFib). G.H. was supported by the German Research Foundation (CRC 1116 B8 and RTG 2989) and Cost Action CARDIOPROTECTION (CA 16225 and ICG 16225). G.V. receives support from grants PID2021‐128891OB‐I00 and PLEC2021–007664‐NextGenerationEU funded by MCIN/AEI/10.13039/501100011033 and Fondo Europeo de Desarrollo Regional (FEDER) A way of making Europe; the Instituto de Salud Carlos III (CIBERCV CB16/11/00411); Fundació Investigació Marato TV3 #20154310; Generalitat of Catalunya-Secretaria d’Universitats i Recerca del Departament d’Economia i coneixement de la Generalitat (2017SGR1480); 2016PROD00043 (Agencia Gestión Ayudas Universitarias Investigación: AGAUR); and CERCA programme/Generalitat de Cataluña.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Gemma Vilahur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Federica Marelli-Berg, who co-reviewed with Daniel Harding; Edward Thorp, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Dedication

The authors dedicate this article to the memory of Ioanna Andreadou (1965–2025)1, who died prematurely and unexpectedly during the preparation of this manuscript, and to whom we are all profoundly indebted, not only for shaping this manuscript but, most importantly, for her substantial influence on the field. Above all, we cherish her friendship and the inspiration she provided to us all.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreadou, I., Ghigo, A., Nikolaou, PE. et al. Immunometabolism in heart failure. Nat Rev Cardiol 22, 751–772 (2025). https://doi.org/10.1038/s41569-025-01165-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-025-01165-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing