Abstract
The interaction between inflammation and metabolism (immunometabolism) is a crucial factor in the pathophysiology of heart failure, whether the cardiac failure originates from ischaemic injury or systemic metabolic disorders, and whether it is associated with reduced or preserved ejection fraction. Ischaemia, metabolic stress and comorbidity-driven systemic inflammation attract innate and adaptive immune cells to the myocardium and induce their polarization towards pro-inflammatory or anti-inflammatory phenotypes through cell-intrinsic metabolic shifts involving oxidative phosphorylation and anaerobic glycolysis. These infiltrating immune cells modulate cardiac and systemic metabolism. The bidirectional metabolic crosstalk between immune cells and parenchymal and stromal cardiac cells contributes to adverse cardiac remodelling. In turn, ischaemic injury and deregulated metabolism stimulate bone marrow and extramedullary myelopoiesis, which increases immune cell recruitment and perpetuates a non-resolving chronic inflammatory state. Pharmacological interventions targeting metabolism have shown promise for improving outcomes in patients with heart failure, but immunomodulatory approaches face multiple challenges. Understanding the complex metabolic pathways and cell–cell interactions that regulate immunometabolism in heart failure is essential to identify new therapies that shift the balance from maladaptive to cardioprotective immune responses. In this Review, we provide a comprehensive overview of the intricate cellular and molecular mechanisms that govern immunometabolism in heart failure and discuss potential approaches to non-invasively monitor and treat patients with heart failure.
Key points
-
The immunometabolic shift between oxidative phosphorylation and glycolysis is crucial for the immune response after acute myocardial infarction or prolonged exposure to metabolic disorders.
-
The bone marrow and the spleen are sources of immune cells, which are released and recruited to the injured heart; the persistent recruitment of immune cells over prolonged periods contributes to the development and progression of heart failure.
-
In heart failure, bidirectional metabolic crosstalk between immune cells and parenchymal and stromal cardiac cells contributes to adverse cardiac remodelling.
-
Advances in molecular imaging techniques enable non-invasive tracking of immune cell trafficking to assess disease progression and response to treatments.
-
Current and emerging therapeutic strategies that more precisely target inflammatory pathways and metabolic processes than guideline-recommended therapies present new opportunities to manage heart failure effectively.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Vilahur, G., Kleinbongard, P. & Zuurbier, C. In memoriam: Ioanna Andreadou (1965–2025). Eur. Heart J. 46, 1699–1701 (2025).
Sattler, S., Campos Ramos, G., Ludewig, B. & Rainer, P. P. Cardioimmunology: the new frontier! Eur. Heart J. 44, 2355–2357 (2023).
Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).
Hilgendorf, I., Frantz, S. & Frangogiannis, N. G. Repair of the infarcted heart: cellular effectors, molecular mechanisms and therapeutic opportunities. Circ. Res. 134, 1718–1751 (2024).
Vilahur, G. & Fuster, V. Interplay between platelets and coagulation: from protective haemostasis to pathological arterial thrombosis. Eur. Heart J. 46, 413–423 (2025).
Badimon, L. & Vilahur, G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med. 276, 618–632 (2014).
Castillo, E. C., Vazquez-Garza, E., Yee-Trejo, D., Garcia-Rivas, G. & Torre-Amione, G. What is the role of the inflammation in the pathogenesis of heart failure? Curr. Cardiol. Rep. 22, 139 (2020).
Myhre, P. L., Selvaraj, S. & Solomon, S. D. Management of hypertension in heart failure with preserved ejection fraction: is there a blood pressure goal? Curr. Opin. Cardiol. 36, 413–419 (2021).
Li, T. et al. Cardiac repair after myocardial infarction: a two-sided role of inflammation-mediated. Front. Cardiovasc. Med. 9, 1077290 (2022).
Vilahur, G. et al. Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction. J. Mol. Cell Cardiol. 50, 522–533 (2011).
Ramos-Regalado, L., Alcover, S., Badimon, L. & Vilahur, G. The influence of metabolic risk factors on the inflammatory response triggered by myocardial infarction: bridging pathophysiology to treatment. Cells 13, 1125 (2024).
Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119, 91–112 (2016).
Vilahur, G. et al. Short-term myocardial ischemia induces cardiac modified C-reactive protein expression and proinflammatory gene (cyclo-oxygenase-2, monocyte chemoattractant protein-1, and tissue factor) upregulation in peripheral blood mononuclear cells. J. Thromb. Haemost. 7, 485–493 (2009).
Caiati, C. & Jirillo, E. The immune system: an arrow to the heart and principles of cardioimmunology as an emerging branch of medicine. Curr. Vasc. Pharmacol. https://doi.org/10.2174/0115701611325234241202073459 (2025).
DeBerge, M., Chaudhary, R., Schroth, S. & Thorp, E. B. Immunometabolism at the heart of cardiovascular disease. JACC Basic Transl. Sci. 8, 884–904 (2023).
Schiattarella, G. G. et al. Immunometabolic mechanisms of heart failure with preserved ejection fraction. Nat. Cardiovasc. Res. 1, 211–222 (2022).
Bajpai, A. & Tilley, D. G. The role of leukocytes in diabetic cardiomyopathy. Front. Physiol. 9, 1547 (2018).
Zheng, Z. Q., Cai, D. H. & Song, Y. F. Identification of immune feature genes and intercellular profiles in diabetic cardiomyopathy. World J. Diabetes 15, 2093–2110 (2024).
Zhong, Z. et al. Identification and verification of immune-related biomarkers and immune infiltration in diabetic heart failure. Front. Cardiovasc. Med. 9, 931066 (2022).
Bansal, S. S. et al. Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circ. Heart Fail. 10, e003688 (2017).
Maisel, A. et al. Experimental autoimmune myocarditis produced by adoptive transfer of splenocytes after myocardial infarction. Circ. Res. 82, 458–463 (1998).
Antipenko, S. et al. Neutrophils are indispensable for adverse cardiac remodeling in heart failure. J. Mol. Cell Cardiol. 189, 1–11 (2024).
Adamo, L. et al. B cell-mediated antigen presentation promotes adverse cardiac remodeling in chronic heart failure. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-4536350/v1 (2024).
Heusch, G. & Kleinbongard, P. The spleen in ischaemic heart disease. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-024-01114-x (2025).
Bertero, E. et al. Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc. Res. 118, 37–52 (2022).
Martini, E. et al. Autoimmune-like mechanism in heart failure enables preventive vaccine therapy. Circ. Res. 136, 4–25 (2025).
Lovell, J. P. et al. B cell-mediated antigen presentation promotes adverse cardiac remodeling in chronic heart failure. Preprint at rs.3.rs-4536350 (2024).
Kessler, E. L. et al. Immunomodulation in heart failure with preserved ejection fraction: current state and future perspectives. J. Cardiovasc. Transl. Res. 14, 63–74 (2021).
Cooper, G. The Cell: a Molecular Approach 2nd edn (Sinauer Associates, 2000).
Soto-Heredero, G., Gomez de Las Heras, M. M., Gabande-Rodriguez, E., Oller, J. & Mittelbrunn, M. Glycolysis — a key player in the inflammatory response. FEBS J. 287, 3350–3369 (2020).
Chen, S. et al. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res. Cardiol. 118, 48 (2023).
Werbner, B. et al. Hypertension and obesity independently drive hypertrophy and alter mitochondrial metabolism in a mouse model of heart failure with preserved ejection fraction. Physiol. Rep. 12, e70072 (2024).
Andreadou, I. et al. PCSK9 in myocardial infarction and cardioprotection: importance of lipid metabolism and inflammation. Front. Physiol. 11, 602497 (2020).
Hu, T. et al. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal. Transduct. Target. Ther. 9, 268 (2024).
Corcoran, S. E. & O’Neill, L. A. HIF1α and metabolic reprogramming in inflammation. J. Clin. Invest. 126, 3699–3707 (2016).
Li, X. et al. Lactate metabolism in human health and disease. Signal. Transduct. Target. Ther. 7, 305 (2022).
Sadiku, P. et al. Neutrophils fuel effective immune responses through gluconeogenesis and glycogenesis. Cell Metab. 33, 1062–1064 (2021).
Viola, A., Munari, F., Sanchez-Rodriguez, R., Scolaro, T. & Castegna, A. The metabolic signature of macrophage responses. Front. Immunol. 10, 1462 (2019).
Yap, J. et al. Macrophages in cardiac remodelling after myocardial infarction. Nat. Rev. Cardiol. 20, 373–385 (2023).
Yang, S., Penna, V. & Lavine, K. J. Functional diversity of cardiac macrophages in health and disease. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-024-01109-8 (2025).
Liao, Y. & Zhu, L. At the heart of inflammation: unravelling cardiac resident macrophage biology. J. Cell Mol. Med. 28, e70050 (2024).
Zhang, S. et al. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 29, 443–456 e445 (2019).
Batista-Gonzalez, A., Vidal, R., Criollo, A. & Carreno, L. J. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front. Immunol. 10, 2993 (2019).
DeBerge, M. et al. Hypoxia-inducible factors individually facilitate inflammatory myeloid metabolism and inefficient cardiac repair. J. Exp. Med. 218, e20200667 (2021).
Ouyang, C., Huang, J., Huang, G. & Wang, Y. Dendritic cell immunometabolism — a potential therapeutic target for allergic diseases. Int. J. Med. Sci. 22, 417–431 (2025).
Sohn, H. & Cooper, M. A. Metabolic regulation of NK cell function: implications for immunotherapy. Immunometabolism 5, e00020 (2023).
Li, J. et al. Classification of regulatory T cells and their role in myocardial ischemia-reperfusion injury. J. Mol. Cell Cardiol. 186, 94–106 (2024).
Kumar, V., Narisawa, M. & Cheng, X. W. Overview of multifunctional Tregs in cardiovascular disease: from insights into cellular functions to clinical implications. FASEB J. 38, e23786 (2024).
Weirather, J. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55–67 (2014).
Schnitter, F. et al. Characterizing the immune response to myocardial infarction in pigs. Basic Res. Cardiol. 119, 453–479 (2024).
Gladow, N. et al. Role of CD4+ T-cells for regulating splenic myelopoiesis and monocyte differentiation after experimental myocardial infarction. Basic Res. Cardiol. 119, 261–275 (2024).
Bansal, S. S. et al. Dysfunctional and proinflammatory regulatory T-lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy. Circulation 139, 206–221 (2019).
Bantug, G. R., Galluzzi, L., Kroemer, G. & Hess, C. The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol. 18, 19–34 (2018).
Jiao, J. et al. Regulatory B cells improve ventricular remodeling after myocardial infarction by modulating monocyte migration. Basic Res. Cardiol. 116, 46 (2021).
Xu, Y. et al. Bone marrow-derived naive B lymphocytes improve heart function after myocardial infarction: a novel cardioprotective mechanism for empagliflozin. Basic Res. Cardiol. 117, 47 (2022).
Iperi, C., Bordron, A., Dueymes, M., Pers, J. O. & Jamin, C. Metabolic program of regulatory B lymphocytes and influence in the control of malignant and autoimmune situations. Front. Immunol. 12, 735463 (2021).
Fu, Y., Wang, L., Yu, B., Xu, D. & Chu, Y. Immunometabolism shapes B cell fate and functions. Immunology 166, 444–457 (2022).
Zhang, X. et al. Immunomodulatory treatment strategies targeting B cells for heart failure. Front. Pharmacol. 13, 854592 (2022).
Vicenzetto, C. et al. Cellular immunology of myocarditis: lights and shades — a literature review. Cells 13, 2082 (2024).
Sagar, S., Liu, P. P. & Cooper, L. T. Jr Myocarditis. Lancet 379, 738–747 (2012).
Cooper, L. T. Jr. Myocarditis. N. Engl. J. Med. 360, 1526–1538 (2009).
Krych, S. et al. Viral myocarditis as a factor leading to the development of heart failure symptoms, including the role of parvovirus B19 infection-systematic review. Int. J. Mol. Sci. 25, 8127 (2024).
Kleinbongard, P. & Heusch, G. A fresh look at coronary microembolization. Nat. Rev. Cardiol. 19, 265–280 (2022).
Martini, E. et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overload-driven heart failure reveals extent of immune activation. Circulation 140, 2089–2107 (2019).
Korf-Klingebiel, M. et al. Myeloid-derived growth factor protects against pressure overload-induced heart failure by preserving sarco/endoplasmic reticulum Ca2+-ATPase expression in cardiomyocytes. Circulation 144, 1227–1240 (2021).
Sintou, A. et al. Mediastinal lymphadenopathy, class-switched auto-antibodies and myocardial immune-complexes during heart failure in rodents and humans. Front. Cell Dev. Biol. 8, 695 (2020).
Boivin-Jahns, V., Jahns, R. & Boege, F. Relevant effects of beta1-adrenoceptor autoantibodies in chronic heart failure. Front. Biosci. 23, 2146–2156 (2018).
Wang, C. & Luo, H. Crosstalk between innate immunity and autophagy in viral myocarditis leading to dilated cardiomyopathy. Rev. Med. Virol. 34, e2586 (2024).
Mamic, P., Snyder, M. & Tang, W. H. W. Gut microbiome-based management of patients with heart failure: JACC review topic of the week. J. Am. Coll. Cardiol. 81, 1729–1739 (2023).
Kominsky, D. J., Campbell, E. L. & Colgan, S. P. Metabolic shifts in immunity and inflammation. J. Immunol. 184, 4062–4068 (2010).
Ritterhoff, J. & Tian, R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat. Rev. Cardiol. 20, 812–829 (2023).
Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R. & Abel, E. D. Cardiac energy metabolism in heart failure. Circ. Res. 128, 1487–1513 (2021).
Sun, Q., Karwi, Q. G., Wong, N. & Lopaschuk, G. D. Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond. Cardiovasc. Res. 120, 1996–2016 (2024).
Hinton, A. Jr. et al. Mitochondrial structure and function in human heart failure. Circ. Res. 135, 372–396 (2024).
Nakayama, H. & Otsu, K. Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases. Biochem. J. 475, 839–852 (2018).
Marelli-Berg, F. M. & Aksentijevic, D. Immunometabolic cross-talk in the inflamed heart. Cell Stress 3, 240–266 (2019).
Omoto, A. C. M., do Carmo, J. M., da Silva, A. A., Hall, J. E. & Mouton, A. J. Immunometabolism, extracellular vesicles and cardiac injury. Front. Endocrinol. 14, 1331284 (2023).
Plomgaard, P. et al. Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 54, 2939–2945 (2005).
Amit, U. et al. New role for interleukin-13 receptor α1 in myocardial homeostasis and heart failure. J. Am. Heart Assoc. 6, e005108 (2017).
Morioka, S. et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563, 714–718 (2018).
Yang, K. et al. Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-kB activation via GPR81-mediated signaling. Front. Immunol. 11, 587913 (2020).
Quinn, W. J. 3rd et al. Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep. 33, 108500 (2020).
Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591, 645–651 (2021).
Rao, D. et al. Acidity-mediated induction of FoxP3+ regulatory T cells. Eur. J. Immunol. 53, e2250258 (2023).
Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293 e1287 (2017).
Martinov, V. et al. Increased expression of monocarboxylate transporter 1 after acute ischemia of isolated, perfused mouse hearts. Life Sci. 85, 379–385 (2009).
Du, J. et al. A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration. Cell Stem Cell 29, 545–558 e513 (2022).
Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).
Prag, H. A. et al. Mechanism of succinate efflux upon reperfusion of the ischaemic heart. Cardiovasc. Res. 117, 1188–1201 (2021).
Krzak, G., Willis, C. M., Smith, J. A., Pluchino, S. & Peruzzotti-Jametti, L. Succinate receptor 1: an emerging regulator of myeloid cell function in inflammation. Trends Immunol. 42, 45–58 (2021).
Fremder, M. et al. A transepithelial pathway delivers succinate to macrophages, thus perpetuating their pro-inflammatory metabolic state. Cell Rep. 36, 109521 (2021).
Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470 e413 (2016).
Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).
Gudgeon, N. et al. Succinate uptake by T cells suppresses their effector function via inhibition of mitochondrial glucose oxidation. Cell Rep. 40, 111193 (2022).
Prag, H. A. et al. Ischemia-selective cardioprotection by malonate for ischemia/reperfusion injury. Circ. Res. 131, 528–541 (2022).
Abe, J., Vujic, A., Prag, H. A., Murphy, M. P. & Krieg, T. Malonate given at reperfusion prevents post-myocardial infarction heart failure by decreasing ischemia/reperfusion injury. Basic Res. Cardiol. 119, 691–697 (2024).
Panico, C. et al. Single-cell RNA sequencing reveals metabolic stress-dependent activation of cardiac macrophages in a model of dyslipidemia-induced diastolic dysfunction. Circulation 150, 1517–1532 (2024).
Zhang, K. et al. TREM2hi resident macrophages protect the septic heart by maintaining cardiomyocyte homeostasis. Nat. Metab. 5, 129–146 (2023).
Del Campo, A., Perez, G., Castro, P. F., Parra, V. & Verdejo, H. E. Mitochondrial function, dynamics and quality control in the pathophysiology of HFpEF. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166208 (2021).
Frangogiannis, N. G. Targeting macrophage-fibroblast interactions in the failing heart. Nat. Rev. Cardiol. 22, 223–224 (2024).
Alexanian, M. et al. Chromatin remodelling drives immune cell-fibroblast communication in heart failure. Nature 635, 434–443 (2024).
Amrute, J. M. et al. Targeting immune-fibroblast cell communication in heart failure. Nature 635, 423–433 (2024).
Lanzer, J. D. et al. Single-cell transcriptomics reveal distinctive patterns of fibroblast activation in heart failure with preserved ejection fraction. Basic Res. Cardiol. 119, 1001–1028 (2024).
Lazaropoulos, M. P. et al. Nuclear ATP-citrate lyase regulates chromatin-dependent activation and maintenance of the myofibroblast gene program. Nat. Cardiovasc. Res. 3, 869–882 (2024).
Aryal, B., Price, N. L., Suarez, Y. & Fernandez-Hernando, C. ANGPTL4 in metabolic and cardiovascular disease. Trends Mol. Med. 25, 723–734 (2019).
Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).
Kanemaru, K. et al. Spatially resolved multiomics of human cardiac niches. Nature 619, 801–810 (2023).
Goldman, S. A. et al. Uncovering the role of epicardial adipose tissue in heart failure with preserved ejection fraction. JACC Adv. 2, 100657 (2023).
Badimon, L. et al. Extracellular vesicles in atherothrombosis: from biomarkers and precision medicine to therapeutic targets. Immunol. Rev. 312, 6–19 (2022).
Shaihov-Teper, O. et al. Extracellular vesicles from epicardial fat facilitate atrial fibrillation. Circulation 143, 2475–2493 (2021).
Garcia, N. A., Moncayo-Arlandi, J., Sepulveda, P. & Diez-Juan, A. Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc. Res. 109, 397–408 (2016).
Montuoro, S., Gentile, F. & Giannoni, A. Neuroimmune cross-talk in heart failure. Cardiovasc. Res. 5, cvae236 (2024).
Huynh, P. et al. Myocardial infarction augments sleep to limit cardiac inflammation and damage. Nature 635, 168–177 (2024).
Glinton, K. et al. Leukocyte–lymphatic intersections during cardiac inflammation. J. Mol. Cell Cardiol. 198, 13–20 (2025).
Houssari, M. et al. Lymphatic and immune cell cross-talk regulates cardiac recovery after experimental myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 40, 1722–1737 (2020).
Heron, C. et al. Regulation and impact of cardiac lymphangiogenesis in pressure-overload-induced heart failure. Cardiovasc. Res. 119, 492–505 (2023).
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).
Huang, Y. et al. Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAFlux. Nat. Commun. 14, 4883 (2023).
Mouton, A. J. & Hall, J. E. Novel roles of immunometabolism and nonmyocyte metabolism in cardiac remodeling and injury. Am. J. Physiol. Regul. Integr. Comp. Physiol 319, R476–R484 (2020).
Swirski, F. K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161–166 (2013).
Sano, S. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 71, 875–886 (2018).
Poller, W. C., Nahrendorf, M. & Swirski, F. K. Hematopoiesis and cardiovascular disease. Circ. Res. 126, 1061–1085 (2020).
Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).
Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320 (2019).
Dougan, M., Dranoff, G. & Dougan, S. K. GM-CSF, IL-3, and IL-5 family of cytokines: regulators of inflammation. Immunity 50, 796–811 (2019).
Mindur, J. E. & Swirski, F. K. Growth factors as immunotherapeutic targets in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 39, 1275–1287 (2019).
Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).
Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).
Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).
Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).
Higgins, J. M. & Mahadevan, L. Physiological and pathological population dynamics of circulating human red blood cells. Proc. Natl Acad. Sci. USA 107, 20587–20592 (2010).
Zhang, S. et al. Bone marrow adipocytes fuel emergency hematopoiesis after myocardial infarction. Nat. Cardiovasc. Res. 2, 1277–1290 (2023).
Murphy, A. J. et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J. Clin. Invest. 121, 4138–4149 (2011).
Weiss, G. & Goodnough, L. T. Anemia of chronic disease. N. Engl. J. Med. 352, 1011–1023 (2005).
Loncar, G., Obradovic, D., Thiele, H., von Haehling, S. & Lainscak, M. Iron deficiency in heart failure. ESC. Heart Fail. 8, 2368–2379 (2021).
Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).
Zouggari, Y. et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. 19, 1273–1280 (2013).
Ratajczak, M. Z., Adamiak, M., Plonka, M., Abdel-Latif, A. & Ratajczak, J. Mobilization of hematopoietic stem cells as a result of innate immunity-mediated sterile inflammation in the bone marrow microenvironment-the involvement of extracellular nucleotides and purinergic signaling. Leukemia 32, 1116–1123 (2018).
Collins, N. et al. The bone marrow protects and optimizes immunological memory during dietary restriction. Cell 178, 1088–1101 e1015 (2019).
Janssen, H. et al. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity 56, 783–796 e787 (2023).
Mendez-Ferrer, S., Chow, A., Merad, M. & Frenette, P. S. Circadian rhythms influence hematopoietic stem cells. Curr. Opin. Hematol. 16, 235–242 (2009).
Mendez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P. S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008).
Garcia-Garcia, A. et al. Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes. Blood 133, 224–236 (2019).
He, W. et al. Circadian expression of migratory factors establishes lineage-specific signatures that guide the homing of leukocyte subsets to tissues. Immunity 49, 1175–1190 e1177 (2018).
Scheiermann, C. et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37, 290–301 (2012).
Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).
Maryanovich, M., Takeishi, S. & Frenette, P. S. Neural regulation of bone and bone marrow. Cold Spring Harb. Perspect. Med. 8, a031344 (2018).
Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).
Pittet, M. J., Nahrendorf, M. & Swirski, F. K. The journey from stem cell to macrophage. Ann. N. Y. Acad. Sci. 1319, 1–18 (2014).
Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).
Oren, O., Small, A. M. & Libby, P. Clonal hematopoiesis and atherosclerosis. J. Clin. Invest. 134, e180066 (2024).
Heyde, A. et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184, 1348–1361 e1322 (2021).
McAlpine, C. S. et al. Sleep exerts lasting effects on hematopoietic stem cell function and diversity. J. Exp. Med. 219, e20220081 (2022).
Marston, N. A. et al. Clonal hematopoiesis, cardiovascular events and treatment benefit in 63,700 individuals from five TIMI randomized trials. Nat. Med. 30, 2641–2647 (2024).
Chavkin, N. W., Min, K. D. & Walsh, K. Importance of clonal hematopoiesis in heart failure. Trends Cardiovasc. Med. 32, 198–203 (2022).
Cochran, J. D. et al. Clonal hematopoiesis in clinical and experimental heart failure with preserved ejection fraction. Circulation 148, 1165–1178 (2023).
Crean, P. A. et al. The fractional distribution of the cardiac output in man using microspheres labelled with technetium 99m. Br. J. Radiol. 59, 209–215 (1986).
Li, H. et al. Biomechanics of phagocytosis of red blood cells by macrophages in the human spleen. Proc. Natl Acad. Sci. USA 121, e2414437121 (2024).
Hiraiwa, H., Yura, Y., Okumura, T. & Murohara, T. Interplay of the heart, spleen, and bone marrow in heart failure: the role of splenic extramedullary hematopoiesis. Heart Fail. Rev. 29, 1049–1063 (2024).
Packer, M. et al. Identification of three mechanistic pathways for iron-deficient heart failure. Eur. Heart J. 45, 2281–2293 (2024).
Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).
Bonner, F. et al. Regional analysis of inflammation and contractile function in reperfused acute myocardial infarction by in vivo (19)F cardiovascular magnetic resonance in pigs. Basic Res. Cardiol. 117, 21 (2022).
Lieder, H. R. et al. Vago-splenic axis in signal transduction of remote ischemic preconditioning in pigs and rats. Circ. Res. 123, 1152–1163 (2018).
Lieder, H. et al. Vago-splenic signal transduction of cardioprotection in humans. Eur. Heart J. 45, 3164–3177 (2024).
Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209, 123–137 (2012).
Gao, X. M. et al. Splenic release of platelets contributes to increased circulating platelet size and inflammation after myocardial infarction. Clin. Sci. 130, 1089–1104 (2016).
Tomczyk, M. et al. Splenic Ly6Chi monocytes contribute to adverse late post-ischemic left ventricular remodeling in heme oxygenase-1 deficient mice. Basic Res. Cardiol. 112, 39 (2017).
Ismahil, M. A. et al. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ. Res. 114, 266–282 (2014).
Prabhu, S. D. The cardiosplenic axis is essential for the pathogenesis of ischemic heart failure. Trans. Am. Clin. Climatol. Assoc. 129, 202–214 (2018).
Leuschner, F. et al. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ. Res. 107, 1364–1373 (2010).
Aker, S. et al. Serum but not myocardial TNF-α concentration is increased in pacing-induced heart failure in rabbits. Am. J. Physiol. Regul. Integr. Comp. Physiol 285, R463–R469 (2003).
Borger, J. et al. Myocardial inflammation is associated with impaired mitochondrial oxidative capacity in ischaemic cardiomyopathy. ESC Heart Fail. 12, 1246–1255 (2024).
Padro, T., Vilahur, G. & Badimon, L. Dyslipidemias and microcirculation. Curr. Pharm. Des. 24, 2921–2926 (2018).
Al-Sharea, A. et al. Nicotinic acetylcholine receptor alpha 7 stimulation dampens splenic myelopoiesis and inhibits atherogenesis in Apoe−/− mice. Atherosclerosis 265, 47–53 (2017).
Yan, C., Li, Y. Z., Luo, X. M., Quan, X. J. & Feng, Y. M. Roles of hematopoietic stem and progenitor cells in ischemic cardiovascular disease. Curr. Stem Cell Res. Ther. 16, 589–598 (2021).
Potteaux, S., Ait-Oufella, H. & Mallat, Z. Role of splenic monocytes in atherosclerosis. Curr. Opin. Lipidol. 26, 457–463 (2015).
Fernandez-Garcia, V., Gonzalez-Ramos, S., Martin-Sanz, P., Castrillo, A. & Bosca, L. Contribution of extramedullary hematopoiesis to atherosclerosis. The spleen as a neglected hub of inflammatory cells. Front. Immunol. 11, 586527 (2020).
Asai, K., Kuzuya, M., Naito, M., Funaki, C. & Kuzuya, F. Effects of splenectomy on serum lipids and experimental atherosclerosis. Angiology 39, 497–504 (1988).
Ai, X. M. et al. The role of splenectomy in lipid metabolism and atherosclerosis (AS). Lipids Health Dis. 17, 186 (2018).
Lee, W. W. et al. PET/MRI of inflammation in myocardial infarction. J. Am. Coll. Cardiol. 59, 153–163 (2012).
Rischpler, C. et al. Prospective evaluation of 18F-fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ. Cardiovasc. Imaging 9, e004316 (2016).
Wollenweber, T. et al. Characterizing the inflammatory tissue response to acute myocardial infarction by clinical multimodality noninvasive imaging. Circ. Cardiovasc. Imaging 7, 811–818 (2014).
Kim, E. J., Kim, S., Kang, D. O. & Seo, H. S. Metabolic activity of the spleen and bone marrow in patients with acute myocardial infarction evaluated by 18F-fluorodeoxyglucose positron emission tomograpic imaging. Circ. Cardiovasc. Imaging 7, 454–460 (2014).
Emami, H. et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 8, 121–130 (2015).
Hiraiwa, H. et al. Splenic size as an indicator of hemodynamics and prognosis in patients with heart failure. Heart Vessels 37, 1344–1355 (2022).
Maeda, D. et al. Splenic volume index determined using computed tomography upon admission is associated with readmission for heart failure among patients with acute decompensated heart failure. Int. Heart J. 62, 584–591 (2021).
Thackeray, J. T., Bankstahl, J. P., Wang, Y., Wollert, K. C. & Bengel, F. M. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for 18F-FDG imaging of myocardial inflammation in mice. Eur. J. Nucl. Med. Mol. Imaging 42, 771–780 (2015).
Glasenapp, A. et al. Multimodality imaging of inflammation and ventricular remodeling in pressure-overload heart failure. J. Nucl. Med. 61, 590–596 (2020).
Bengel, F. M., Permanetter, B., Ungerer, M., Nekolla, S. & Schwaiger, M. Non-invasive estimation of myocardial efficiency using positron emission tomography and carbon-11 acetate-comparison between the normal and failing human heart. Eur. J. Nucl. Med. 27, 319–326 (2000).
Borchert, T. et al. Dissecting the target leukocyte subpopulations of clinically relevant inflammation radiopharmaceuticals. J. Nucl. Cardiol. 28, 1636–1645 (2021).
Lapa, C. et al. Imaging of myocardial inflammation with somatostatin receptor based PET/CT — a comparison to cardiac MRI. Int. J. Cardiol. 194, 44–49 (2015).
Thackeray, J. T. et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J. Am. Coll. Cardiol. 71, 263–275 (2018).
Thackeray, J. T. et al. Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc. Imaging 8, 1417–1426 (2015).
Hess, A. et al. Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. Eur. Heart J. 41, 3564–3575 (2020).
Werner, R. A. et al. CXCR4-targeted imaging of post-infarct myocardial tissue inflammation: prognostic value after reperfused myocardial infarction. JACC Cardiovasc. Imaging 15, 372–374 (2022).
Heo, G. S. et al. Molecular imaging visualizes recruitment of inflammatory mocytes and macrophages to the injured heart. Circ. Res. 124, 881–890 (2019).
Glasenapp, A. et al. Molecular imaging of inflammation and fibrosis in pressure overload heart failure. Circ. Res. 129, 369–382 (2021).
Werner, R. A. et al. Longitudinal 18F-FDG PET imaging in a rat model of autoimmune myocarditis. Eur. Heart J. Cardiovasc. Imaging 20, 467–474 (2019).
Writing, C. et al. 2024 ACC expert consensus decision pathway on strategies and criteria for the diagnosis and management of myocarditis: a report of the American College of Cardiology solution set oversight committee. J. Am. Coll. Cardiol. 85, 391–431 (2024).
Lagan, J. et al. Substrate for the myocardial inflammation-heart failure hypothesis identified using novel USPIO methodology. JACC Cardiovasc. Imaging 14, 365–376 (2021).
Joergensen, S. H. et al. Hyperpolarized [1-(13)C]pyruvate cardiovascular magnetic resonance imaging identifies metabolic phenotypes in patients with heart failure. J. Cardiovasc. Magn. Reson. 26, 101095 (2024).
Fuetterer, M. et al. Hyperpolarized metabolic and parametric CMR imaging of longitudinal metabolic–structural changes in experimental chronic infarction. JACC Cardiovasc. Imaging 15, 2051–2064 (2022).
Wang, Y. et al. C-X-C motif chemokine receptor 4 blockade promotes tissue repair after myocardial infarction by enhancing regulatory T cell mobilization and immune-regulatory function. Circulation 139, 1798–1812 (2019).
Jujo, K. et al. CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc. Natl Acad. Sci. USA 107, 11008–11013 (2010).
Polidori, T. et al. Radiomics applications in cardiac imaging: a comprehensive review. Radiol. Med. 128, 922–933 (2023).
Levine, B., Kalman, J., Mayer, L., Fillit, H. M. & Packer, M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 323, 236–241 (1990).
Oral, H., Dorn, G. W. 2nd & Mann, D. L. Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian cardiac myocyte. J. Biol. Chem. 272, 4836–4842 (1997).
Yokoyama, T. et al. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J. Clin. Invest. 92, 2303–2312 (1993).
Deswal, A. et al. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation 99, 3224–3226 (1999).
Torre-Amione, G. et al. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93, 704–711 (1996).
Kapadia, S., Torre-Amione, G., Yokoyama, T. & Mann, D. L. Soluble TNF binding proteins modulate the negative inotropic properties of TNF-α in vitro. Am. J. Physiol. 268, H517–H525 (1995).
Kleinbongard, P., Schulz, R. & Heusch, G. TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail. Rev. 16, 49–69 (2011).
Papamichail, A. et al. Targeting key inflammatory mechanisms underlying heart failure: a comprehensive review. Int. J. Mol. Sci. 25, 5–10 (2023).
Hamid, T. et al. Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kB and inflammatory activation. Circulation 119, 1386–1397 (2009).
Diamantopoulos, A. P., Larsen, A. I. & Omdal, R. Is it safe to use TNF-α blockers for systemic inflammatory disease in patients with heart failure? Importance of dosage and receptor specificity. Int. J. Cardiol. 167, 1719–1723 (2013).
Schulz, R. & Heusch, G. Tumor necrosis factor-α and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation 119, 1355–1357 (2009).
Javed, Q. & Murtaza, I. Therapeutic potential of tumour necrosis factor-alpha antagonists in patients with chronic heart failure. Heart Lung Circ. 22, 323–327 (2013).
Chung, E. S. et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation 107, 3133–3140 (2003).
Mann, D. L. et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the randomized etanercept worldwide evaluation (RENEWAL). Circulation 109, 1594–1602 (2004).
Deng, H. W. et al. The role of glucocorticoids in increasing cardiovascular risk. Front. Cardiovasc. Med. 10, 1187100 (2023).
Brook, R. D. et al. Cardiovascular outcomes with an inhaled beta2-agonist/corticosteroid in patients with COPD at high cardiovascular risk. Heart 103, 1536–1542 (2017).
Costello, R. E., Yimer, B. B., Roads, P., Jani, M. & Dixon, W. G. Glucocorticoid use is associated with an increased risk of hypertension. Rheumatology 60, 132–139 (2021).
Skyschally, A. et al. Glucocorticoid treatment prevents progressive myocardial dysfunction resulting from experimental coronary microembolization. Circulation 109, 2337–2342 (2004).
Frustaci, A., Russo, M. A. & Chimenti, C. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur. Heart J. 30, 1995–2002 (2009).
Chimenti, C., Russo, M. A. & Frustaci, A. Immunosuppressive therapy in virus-negative inflammatory cardiomyopathy: 20-year follow-up of the TIMIC trial. Eur. Heart J. 43, 3463–3473 (2022).
Parrillo, J. E. et al. A prospective, randomized, controlled trial of prednisone for dilated cardiomyopathy. N. Engl. J. Med. 321, 1061–1068 (1989).
Imazio, M. & Nidorf, M. Colchicine and the heart. Eur. Heart J. 42, 2745–2760 (2021).
Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).
Deftereos, S. et al. Anti-inflammatory treatment with colchicine in stable chronic heart failure: a prospective, randomized study. JACC Heart Fail. 2, 131–137 (2014).
Pascual-Figal, D. et al. Colchicine in acute heart failure: rationale and design of a randomized double-blind placebo-controlled trial (COLICA). Eur. J. Heart Fail. 26, 1999–2007 (2024).
Pascual-Figal, D. et al. Colchicine in acutely decompensated heart failure: the COLICA trial. Eur. Heart J. 45, 4826–4836 (2024).
Chiu, B., Jantuan, E., Shen, F., Chiu, B. & Sergi, C. Autophagy-inflammasome interplay in heart failure: a systematic review on basics, pathways, and therapeutic perspectives. Ann. Clin. Lab. Sci. 47, 243–252 (2017).
Abbate, A. et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ. Res. 126, 1260–1280 (2020).
Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for Atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).
Febbraio, M. A. Role of interleukins in obesity: implications for metabolic disease. Trends Endocrinol. Metab. 25, 312–319 (2014).
Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139, 1289–1299 (2019).
Adamo, L., Rocha-Resende, C., Prabhu, S. D. & Mann, D. L. Reappraising the role of inflammation in heart failure. Nat. Rev. Cardiol. 17, 269–285 (2020).
Svensson, E. C. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521–528 (2022).
Heusch, G. & Kleinbongard, P. The enigmata of cardioprotection with SGLT2 inhibition. JACC Basic Transl. Sci. 10, 62–64 (2025).
Khiali, S., Taban-Sadeghi, M., Sarbakhsh, P., Khezerlouy-Aghdam, N. & Entezari-Maleki, T. Empagliflozin and colchicine in patients with reduced left ventricular ejection fraction following ST-elevation myocardial infarction: a randomized, double-blinded, three-arm parallel-group, controlled trial. Eur. J. Clin. Pharmacol. 80, 93–104 (2024).
Selvaraj, S. et al. Metabolic effects of the SGLT2 inhibitor dapagliflozin in heart failure across the spectrum of ejection fraction. Circ. Heart Fail. 17, e011980 (2024).
Byrne, N. J. et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circ. Heart Fail. 13, e006277 (2020).
Kim, S. R. et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun. 11, 2127 (2020).
Tullius, S. G. et al. NAD+ protects against EAE by regulating CD4+ T-cell differentiation. Nat. Commun. 5, 5101 (2014).
Tong, D. et al. NAD+ repletion reverses heart failure with preserved ejection fraction. Circ. Res. 128, 1629–1641 (2021).
Liu, Y. P., Wen, R., Liu, C. F., Zhang, T. N. & Yang, N. Cellular and molecular biology of sirtuins in cardiovascular disease. Biomed. Pharmacother. 164, 114931 (2023).
Tanno, M., Kuno, A., Horio, Y. & Miura, T. Emerging beneficial roles of sirtuins in heart failure. Basic Res. Cardiol. 107, 273 (2012).
Xu, C. Q. et al. Sirtuins in macrophage immune metabolism: a novel target for cardiovascular disorders. Int. J. Biol. Macromol. 256, 128270 (2024).
Park, S. Y. et al. SIRT1 inhibits differentiation of monocytes to macrophages: amelioration of synovial inflammation in rheumatoid arthritis. J. Mol. Med. 94, 921–931 (2016).
Ciarlo, E. et al. Sirtuin 2 deficiency increases bacterial phagocytosis by macrophages and protects from chronic staphylococcal infection. Front. Immunol. 8, 1037 (2017).
Liu, P. et al. Sirtuin 3-induced macrophage autophagy in regulating NLRP3 inflammasome activation. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 764–777 (2018).
Woo, S. J. et al. Myeloid sirtuin 6 deficiency accelerates experimental rheumatoid arthritis by enhancing macrophage activation and infiltration into synovium. EBioMedicine 38, 228–237 (2018).
Pham, Q. H. et al. Daily oral administration of probiotics engineered to constantly secrete short-chain fatty acids effectively prevents myocardial injury from subsequent ischaemic heart disease. Cardiovasc. Res. 120, 1737–1751 (2024).
Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).
Wang, A., Li, Z., Sun, Z., Zhang, D. & Ma, X. Gut-derived short-chain fatty acids bridge cardiac and systemic metabolism and immunity in heart failure. J. Nutr. Biochem. 120, 109370 (2023).
Zhao, P., Zhao, S., Tian, J. & Liu, X. Significance of gut microbiota and short-chain fatty acids in heart failure. Nutrients 14, 3758 (2022).
Heusch, G. et al. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol. 67, 102894 (2023).
Mouton, A. J. et al. Dimethyl fumarate preserves left ventricular infarct integrity following myocardial infarction via modulation of cardiac macrophage and fibroblast oxidative metabolism. J. Mol. Cell Cardiol. 158, 38–48 (2021).
Kornberg, M. D. et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 360, 449–453 (2018).
Hofmann, U. et al. Interleukin-13 deficiency aggravates healing and remodeling in male mice after experimental myocardial infarction. Circ. Heart Fail. 7, 822–830 (2014).
Alvarez-Argote, S. et al. IL-13 promotes functional recovery after myocardial infarction via direct signaling to macrophages. JCI Insight 9, e172702 (2024).
Palsson-McDermott, E. M. & O’Neill, L. A. J. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 30, 300–314 (2020).
Varani, K. et al. A2A and A3 adenosine receptor expression in rheumatoid arthritis: upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res. Ther. 13, R197 (2011).
Glaesener, S. et al. Distinct effects of methotrexate and etanercept on the B cell compartment in patients with juvenile idiopathic arthritis. Arthritis Rheumatol. 66, 2590–2600 (2014).
Mangoni, A. A. et al. Methotrexate and cardiovascular prevention: an appraisal of the current evidence. Ther. Adv. Cardiovasc. Dis. 17, 17539447231215213 (2023).
Moreira, D. M., Vieira, J. L. & Gottschall, C. A. The effects of methotrexate therapy on the physical capacity of patients with ischemic heart failure: a randomized double-blind, placebo-controlled trial (METIS trial). J. Card. Fail. 15, 828–834 (2009).
Balakumar, P. & Singh, M. Anti-tumour necrosis factor-alpha therapy in heart failure: future directions. Basic Clin. Pharmacol. Toxicol. 99, 391–397 (2006).
Van Tassell, B. W. et al. Interleukin-1 blockade in acute decompensated heart failure: a randomized, double-blinded, placebo-controlled pilot study. J. Cardiovasc. Pharmacol. 67, 544–551 (2016).
Van Tassell, B. W. et al. Interleukin-1 blockade in recently decompensated systolic heart failure: results from REDHART (recently decompensated heart failure anakinra response trial). Circ. Heart Fail. 10, e004373 (2017).
Trankle, C. R. et al. Usefulness of canakinumab to improve exercise capacity in patients with long-term systolic heart failure and elevated C-reactive protein. Am. J. Cardiol. 122, 1366–1370 (2018).
Costanza, A. C., Moscavitch, S. D., Faria Neto, H. C. & Mesquita, E. T. Probiotic therapy with Saccharomyces boulardii for heart failure patients: a randomized, double-blind, placebo-controlled pilot trial. Int. J. Cardiol. 179, 348–350 (2015).
Awoyemi, A. et al. Rifaximin or Saccharomyces boulardii in heart failure with reduced ejection fraction: results from the randomized GutHeart trial. EBioMedicine 70, 103511 (2021).
Pei, Z. et al. Effects of nicotinamide adenine dinucleotide on older patients with heart failure. Rev. Cardiovasc. Med. 25, 297 (2024).
Bozkurt, B. et al. Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation 103, 1044–1047 (2001).
Coletta, A. P., Clark, A. L., Banarjee, P. & Cleland, J. G. Clinical trials update: renewal (RENAISSANCE and RECOVER) and ATTACH. Eur. J. Heart Fail. 4, 559–561 (2002).
Gal, R. et al. Resveratrol improves heart function by moderating inflammatory processes in patients with systolic heart failure. Antioxidants 9, 1108 (2020).
Van Tassell, B. W. et al. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am. J. Cardiol. 113, 321–327 (2014).
Van Tassell, B. W. et al. IL-1 blockade in patients with heart failure with preserved ejection fraction. Circ. Heart Fail. 11, e005036 (2018).
Lam, C. S. P. et al. Myeloperoxidase inhibition in heart failure with preserved or mildly reduced ejection fraction: SATELLITE trial results. J. Card. Fail. 30, 104–110 (2024).
US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06062966 (2025).
Van Tassell, B. et al. Rationale and design of interleukin-1 blockade in recently decompensated heart failure (REDHART2): a randomized, double blind, placebo controlled, single center, phase 2 study. J. Transl. Med. 20, 270 (2022).
US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03797001 (2024).
US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05873881 (2024).
US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06286423 (2024).
US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06217120 (2024).
US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06200207. (2025).
US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05636176 (2025).
Lund, L. H. et al. Rationale and design of ENDEAVOR: a sequential phase 2b-3 randomized clinical trial to evaluate the effect of myeloperoxidase inhibition on symptoms and exercise capacity in heart failure with preserved or mildly reduced ejection fraction. Eur. J. Heart Fail. 25, 1696–1707 (2023).
US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04986202 (2024).
US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06081049 (2024).
US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT06130059 (2025).
Onodi, Z. et al. AIM2-driven inflammasome activation in heart failure. Cardiovasc. Res. 117, 2639–2651 (2021).
Deng, Y. et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF. Circ. Res. 128, 232–245 (2021).
Sano, S. et al. JAK2 (V617F)-mediated clonal hematopoiesis accelerates pathological remodeling in murine heart failure. JACC Basic Transl. Sci. 4, 684–697 (2019).
Heinrichs, M. et al. The healing myocardium mobilizes a distinct B-cell subset through a CXCL13–CXCR5-dependent mechanism. Cardiovasc. Res. 117, 2664–2676 (2021).
Harouki, N. et al. The IL-1β antibody gevokizumab limits cardiac remodeling and coronary dysfunction in rats with heart failure. JACC BasicTransl. Sci. 2, 418–430 (2017).
Nakkala, J. R. et al. Dimethyl itaconate-loaded nanofibers rewrite macrophage polarization, reduce inflammation, and enhance repair of myocardic infarction. Small 17, e2006992 (2021).
Louwe, M. C. et al. Absence of NLRP3 inflammasome in hematopoietic cells reduces adverse remodeling after experimental myocardial infarction. JACC Basic Transl. Sci. 5, 1210–1224 (2020).
Byrne, N. J. et al. Chronically elevating circulating ketones can reduce cardiac inflammation and blunt the development of heart failure. Circ. Heart Fail. 13, e006573 (2020).
Zhang, L. et al. Resveratrol ameliorates cardiac remodeling in a murine model of heart failure with preserved ejection fraction. Front. Pharmacol. 12, 646240 (2021).
Fu, Y. et al. Anthelmintic niclosamide attenuates pressure-overload induced heart failure in mice. Eur. J. Pharmacol. 912, 174614 (2021).
Lukovic, D. et al. Increased [18F]FDG uptake in the infarcted myocardial area displayed by combined PET/CMR correlates with snRNA-seq-detected inflammatory cell invasion. Basic Res. Cardiol. 119, 807–829 (2024).
Lewis, A. J. M. et al. Noninvasive immunometabolic cardiac inflammation imaging using hyperpolarized magnetic resonance. Circ. Res. 122, 1084–1093 (2018).
Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).
Stone, K. D., Prussin, C. & Metcalfe, D. D. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 125, S73–S80 (2010).
Audiger, C., Rahman, M. J., Yun, T. J., Tarbell, K. V. & Lesage, S. The importance of dendritic cells in maintaining immune tolerance. J. Immunol. 198, 2223–2231 (2017).
Van der Borght, K. et al. Myocarditis elicits dendritic cell and monocyte infiltration in the heart and self-antigen presentation by conventional type 2 dendritic cells. Front. Immunol. 9, 2714 (2018).
Yang, W. et al. Innate lymphoid cells and myocardial infarction. Front. Immunol. 12, 758272 (2021).
Jin, J., Jiang, Y., Chakrabarti, S. & Su, Z. Cardiac mast cells: a two-head regulator in cardiac homeostasis and pathogenesis following injury. Front. Immunol. 13, 963444 (2022).
Blanton, R. M., Carrillo-Salinas, F. J. & Alcaide, P. T-cell recruitment to the heart: friendly guests or unwelcome visitors? Am. J. Physiol. Heart Circ. Physiol 317, H124–H140 (2019).
Wang, X. et al. Targeting regulatory T cells for cardiovascular diseases. Front. Immunol. 14, 1126761 (2023).
Xia, N. et al. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation 142, 1956–1973 (2020).
Garcia-Rivas, G. et al. The role of B cells in heart failure and implications for future immunomodulatory treatment strategies. ESC Heart Fail. 7, 1387–1399 (2020).
Aziz, M., Holodick, N. E., Rothstein, T. L. & Wang, P. The role of B-1 cells in inflammation. Immunol. Res. 63, 153–166 (2015).
Acknowledgements
This article is based on work from COST Action EU-METAHEART (CA22169) supported by COST (European Cooperation in Science and Technology). Ι.Α. and P.-E.N. were supported by the 2nd Call for Hellenic Foundation for Research and Innovation (H.F.R.I.) Research Projects to Support Faculty Members and Researchers ‘ElucidatioN of LIGHt chain amyloidosis induced cardioToxicity: EstablishMENT of in vitro and in vivo models’ (ENLIGHTEnMENT). A.G. was supported by the Italian Ministry of Health (GR-2021-12371950) and Italian Ministry of Education, Universities and Research (PRIN 2022 20223YPL49 and PRIN PNRR 2022 P2022ZB72T). J.T.T. was supported by the German Research Foundation (Heisenberg Programme TH2161/3-1) and Fondation Leducq (Transatlantic Network ImmunoFib). G.H. was supported by the German Research Foundation (CRC 1116 B8 and RTG 2989) and Cost Action CARDIOPROTECTION (CA 16225 and ICG 16225). G.V. receives support from grants PID2021‐128891OB‐I00 and PLEC2021–007664‐NextGenerationEU funded by MCIN/AEI/10.13039/501100011033 and Fondo Europeo de Desarrollo Regional (FEDER) A way of making Europe; the Instituto de Salud Carlos III (CIBERCV CB16/11/00411); Fundació Investigació Marato TV3 #20154310; Generalitat of Catalunya-Secretaria d’Universitats i Recerca del Departament d’Economia i coneixement de la Generalitat (2017SGR1480); 2016PROD00043 (Agencia Gestión Ayudas Universitarias Investigación: AGAUR); and CERCA programme/Generalitat de Cataluña.
Author information
Authors and Affiliations
Contributions
The authors contributed substantially to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Cardiology thanks Federica Marelli-Berg, who co-reviewed with Daniel Harding; Edward Thorp, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
The authors dedicate this article to the memory of Ioanna Andreadou (1965–2025)1, who died prematurely and unexpectedly during the preparation of this manuscript, and to whom we are all profoundly indebted, not only for shaping this manuscript but, most importantly, for her substantial influence on the field. Above all, we cherish her friendship and the inspiration she provided to us all.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Andreadou, I., Ghigo, A., Nikolaou, PE. et al. Immunometabolism in heart failure. Nat Rev Cardiol 22, 751–772 (2025). https://doi.org/10.1038/s41569-025-01165-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41569-025-01165-8
This article is cited by
-
Metabolic alterations in heart failure
Nature Reviews Cardiology (2025)
-
Cardiac intermediary metabolism in heart failure: substrate use, signalling roles and therapeutic targets
Nature Reviews Cardiology (2025)
-
Chemokine–receptor-guided B-cell immunity in cardiovascular disease
Basic Research in Cardiology (2025)