Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Big data in IBD: a look into the future

Abstract

Big data methodologies, made possible with the increasing generation and availability of digital data and enhanced analytical capabilities, have produced new insights to improve outcomes in many disciplines. Application of big data in the health-care sector is in its early stages, although the potential for leveraging underutilized data to gain a better understanding of disease and improve quality of care is enormous. Owing to the intrinsic characteristics of inflammatory bowel disease (IBD) and the management dilemmas that it imposes, the implementation of big data research strategies not only can complement current research efforts but also could represent the only way to disentangle the complexity of the disease. In this Review, we explore important potential applications of big data in IBD research, including predictive models of disease course and response to therapy, characterization of disease heterogeneity, drug safety and development, precision medicine and cost-effectiveness of care. We also discuss the strengths and limitations of potential data sources that big data analytics could draw from in the field of IBD, including electronic health records, clinical trial data, e-health applications and genomic, transcriptomic, proteomic, metabolomic and microbiomic data.

Key points

  • Big data refers to sets of data whose scale and complexity impose the use of dedicated analytical and statistical approaches.

  • The distinctive attributes of big data include the four Vs: volume, variety, velocity and veracity.

  • Big data approaches have been successfully used in many different areas, including finance and politics, and more recently have been increasingly implemented in health care.

  • Big data analytics are innovative approaches to help disentangle the complexity of IBD.

  • Potential applications of big data in the field of IBD might include precise phenomapping, the development of predictive models, precision medicine, epidemiological models and drug discovery.

  • Researchers will face several potential limitations and challenges when using big data approaches in IBD, including ethical and legal restrictions, heterogeneous data sources, poor quality data and the need for validation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of big data in IBD.

Similar content being viewed by others

References

  1. Ungaro, R., Mehandru, S., Allen, P. B., Peyrin-Biroulet, L. & Colombel, J.-F. Ulcerative colitis. Lancet 389, 1756–1770 (2017).

    Article  PubMed  Google Scholar 

  2. Torres, J., Mehandru, S., Colombel, J.-F. & Peyrin-Biroulet, L. Crohn’s disease. Lancet 389, 1741–1755 (2016).

    Article  PubMed  Google Scholar 

  3. de Souza, H. S. P., Fiocchi, C. & Iliopoulos, D. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol. 14, 739–749 (2017).

    Article  PubMed  Google Scholar 

  4. Jin, L. et al. Pathway-based analysis tools for complex diseases: a review. Genomics Proteomics Bioinformatics 12, 210–220 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Actis, G. C. & Rosina, F. Inflammatory bowel disease: an archetype disorder of outer environment sensor systems. World J. Gastrointest. Pharmacol. Ther. 4, 41–46 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Olivera, P., Danese, S. & Peyrin-Biroulet, L. Next generation of small molecules in inflammatory bowel disease. Gut 66, 199–209 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Ng, S. C. et al. Environmental risk factors in inflammatory bowel disease: a population-based case-control study in Asia-Pacific. Gut 64, 1063–1071 (2015).

    Article  PubMed  Google Scholar 

  8. Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2017).

    Article  PubMed  Google Scholar 

  9. Bernstein, C. N. Treatment of IBD: where we are and where we are going. Am. J. Gastroenterol. 110, 114–126 (2015).

    Article  PubMed  Google Scholar 

  10. Actis, G. C., Pellicano, R. & Rosina, F. Inflammatory bowel diseases: current problems and future tasks. World J. Gastrointest. Pharmacol. Ther. 5, 169–174 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Manyika, J. et al. Big Data: The Next Frontier for Innovation, Competition, and Productivity (McKinsey, 2011).

  12. Philip Chen, C. L. & Zhang, C.-Y. Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inf. Sci. 275, 314–347 (2014).

    Article  Google Scholar 

  13. Nickerson, D. W. & Rogers, T. Political campaigns and big data. J. Econ. Perspect. 28, 51–74 (2014).

    Article  Google Scholar 

  14. Kayyali, B., Knott, D. & Van Kuiken, S. The big-data revolution in US health care: accelerating value and innovation. McKinsey https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/the-big-data-revolution-in-us-health-care (2013).

  15. Obermeyer, Z. & Emanuel, E. J. Predicting the future — big data, machine learning, and clinical medicine. N. Engl. J. Med. 375, 1216–1219 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wooden, B., Goossens, N., Hoshida, Y. & Friedman, S. L. Using big data to discover diagnostics and therapeutics for gastrointestinal and liver diseases. Gastroenterology 152, 53–67 (2017).

    Article  PubMed  Google Scholar 

  17. Rumsfeld, J. S., Joynt, K. E. & Maddox, T. M. Big data analytics to improve cardiovascular care: promise and challenges. Nat. Rev. Cardiol. 13, 350–359 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Raghupathi, W. & Raghupathi, V. Big data analytics in healthcare: promise and potential. Health Inf. Sci. Syst. 2, 3 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alonso, S. G., de la Torre Díez, I., Rodrigues, J. J. P. C., Hamrioui, S. & López-Coronado, M. A. systematic review of techniques and sources of big data in the healthcare sector. J. Med. Syst. 41, 183 (2017).

    Article  PubMed  Google Scholar 

  20. Ginsberg, J. et al. Detecting influenza epidemics using search engine query data. Nature 457, 1012–1014 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Butler, D. When Google got flu wrong. Nature 494, 155–156 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Lazer, D., Kennedy, R., King, G. & Vespignani, A. The parable of Google Flu: traps in big data analysis. Science 343, 1203–1205 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Dinov, I. D. et al. Predictive big data analytics: a study of Parkinson’s disease using large, complex, heterogeneous, incongruent, multi-source and incomplete observations. PLOS ONE 11, 1–28 (2016).

    Article  CAS  Google Scholar 

  24. US National Institutes of Health. Big data for knowledge. NIH https://commonfund.nih.gov/bd2k (2018).

  25. Ketchersid, T. Big data in nephrology: friend or foe? Blood Purif. 36, 160–164 (2014).

    Article  Google Scholar 

  26. Auffray, C. et al. Making sense of big data in health research: towards an EU action plan. Genome Med. 8, 71 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bellazzi, R. Big data and biomedical informatics: a challenging opportunity. Yearb. Med. Inform. 9, 8–13 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Corbin, K. How CIOs can prepare for healthcare ‘data tsunami’. CIO https://www.cio.com/article/2860072/healthcare/how-cios-can-prepare-for-healthcare-data-tsunami.html (2014).

  29. Lee, C. H. & Yoon, H.-J. Medical big data: promise and challenges. Kidney Res. Clin. Pract. 36, 3–11 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Weber, G. M., Mandl, K. D. & Kohane, I. S. Finding the missing link for big biomedical data. JAMA 311, 2479–2480 (2014).

    CAS  PubMed  Google Scholar 

  31. Carroll, S. & Goodstein, D. Defining the scientific method. Nat. Methods 6, 237–237 (2009).

    Article  CAS  Google Scholar 

  32. Subramanian, S., Ekbom, A. & Rhodes, J. M. Recent advances in clinical practice: a systematic review of isolated colonic Crohn’s disease: the third IBD? Gut 66, 362–381 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Ruel, J., Ruane, D., Mehandru, S., Gower-Rousseau, C. & Colombel, J.-F. IBD across the age spectrum: is it the same disease? Nat. Rev. Gastroenterol. Hepatol. 11, 88–98 (2014).

    Article  PubMed  Google Scholar 

  34. Aloi, M. et al. Phenotype and disease course of early-onset pediatric inflammatory bowel disease. Inflamm. Bowel Dis. 20, 597–605 (2014).

    Article  PubMed  Google Scholar 

  35. Billiet, T. & Vermeire, S. Differences between adults and children: genetics and beyond. Expert Rev. Gastroenterol. Hepatol. 9, 191–196 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Peyrin-Biroulet, L. et al. Defining disease severity in inflammatory bowel diseases: current and future directions. Clin. Gastroenterol. Hepatol. 14, 348–354 (2016).

    Article  PubMed  Google Scholar 

  37. Shivade, C. et al. A review of approaches to identifying patient phenotype cohorts using electronic health records. J. Am. Med. Inform. Assoc. 21, 221–230 (2014).

    Article  PubMed  Google Scholar 

  38. Altman, R. B. & Ashley, E. A. Using “big data” to dissect clinical heterogeneity. Circulation 131, 232–233 (2015).

    Article  PubMed  Google Scholar 

  39. D’Haens, G. et al. Early combined immunosuppression or conventional management in patients with newly diagnosed Crohn’s disease: an open randomised trial. Lancet 371, 660–667 (2008).

    Article  PubMed  CAS  Google Scholar 

  40. Peyrin-Biroulet, L. et al. Impact of azathioprine and tumour necrosis factor antagonists on the need for surgery in newly diagnosed Crohn’s disease. Gut 60, 930–936 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Allen, P. B. et al. Review article: moving towards common therapeutic goals in Crohn’s disease and rheumatoid arthritis. Aliment. Pharmacol. Ther. 45, 1058–1072 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Gomollón, F. et al. 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016 —part 1: diagnosis and medical management. J. Crohns Colitis 11, 3–25 (2017).

    Article  PubMed  Google Scholar 

  43. Cosnes, J. et al. Early administration of azathioprine versus conventional management of Crohn’s Disease: a randomized controlled trial. Gastroenterology 145, 758–765 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Stallmach, A. et al. Parameters of a severe disease course in ulcerative colitis. World J. Gastroenterol. 20, 12574–12580 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A. & Escobar, G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff. 33, 1123–1131 (2014).

    Article  Google Scholar 

  46. Olivera, P., Danese, S. & Peyrin-Biroulet, L. JAK inhibition in inflammatory bowel disease. Expert Rev. Clin. Immunol. 13, 693–703 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Chaudhary, R. & Ghosh, S. Prediction of response to infliximab in Crohn’s disease. Dig. Liver Dis. 37, 559–563 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Siegel, C. A. & Melmed, G. Y. Predicting response to Anti-TNF Agents for the treatment of crohn’s disease. Therap. Adv. Gastroenterol. 2, 245–251 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Arijs, I. et al. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut 58, 1612–1619 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Burke, K. E. et al. Genetic markers predict primary nonresponse and durable response to anti-tumor necrosis factor therapy in ulcerative colitis. Inflamm. Bowel Dis. 24, 1840–1848 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Boyapati, R. K., Kalla, R., Satsangi, J. & Ho, G. Biomarkers in search of precision medicine in IBD. Am. J. Gastroenterol. 111, 1682–1690 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Beaugerie, L. et al. Lymphoproliferative disorders in patients receiving thiopurines for inflammatory bowel disease: a prospective observational cohort study. Lancet 374, 1617–1625 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. The I-CARE Study Group. P509 IBD cancer and serious infections in Europe (I-CARE): a European prospective observational study. J. Crohns Colitis 11, S338–S339 (2017).

    Article  Google Scholar 

  54. Harpaz, R. et al. Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf. 37, 777–790 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arnaud, M. et al. Methods for safety signal detection in healthcare databases: a literature review. Expert Opin. Drug Saf. 16, 721–732 (2017).

    Article  PubMed  Google Scholar 

  56. Wang, G., Jung, K., Winnenburg, R. & Shah, N. H. A method for systematic discovery of adverse drug events from clinical notes. J. Am. Med. Inform. Assoc. 22, 1196–1204 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kaplan, G. G. & Ng, S. C. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology 152, 313–321 (2017).

    Article  PubMed  Google Scholar 

  58. Kaplan, G. G. The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 12, 720–727 (2015).

    Article  PubMed  Google Scholar 

  59. Sebaa, A., Chikh, F., Nouicer, A. & Tari, A. Medical big data warehouse: architecture and system design, a case study: improving healthcare resources distribution. J. Med. Syst. 42, 59 (2018).

    Article  PubMed  Google Scholar 

  60. Bram, J. T., Warwick-Clark, B., Obeysekare, E. & Mehta, K. Utilization and monetization of healthcare data in developing countries. Big Data 3, 59–66 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. van der Valk, M. E. et al. Healthcare costs of inflammatory bowel disease have shifted from hospitalisation and surgery towards anti-TNFα therapy: results from the COIN study. Gut 63, 72–79 (2014).

    Article  PubMed  Google Scholar 

  62. Schuhmacher, A., Gassmann, O. & Hinder, M. Changing R&D models in research-based pharmaceutical companies. J. Transl Med. 14, 105 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Monteleone, G. et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N. Engl. J. Med. 372, 1104–1113 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Celgene. Celgene provides update on GED-0301 (mongersen) inflammatory bowel disease program. Celgene https://ir.celgene.com/press-releases/press-release-details/2017/Celgene-Provides-Update-on-GED-0301-mongersen-Inflammatory-Bowel-Disease-Program/default.aspx (2017).

  65. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Chen, B. & Butte, A. J. Leveraging big data to transform target selection and drug discovery. Clin. Pharmacol. Ther. 99, 285–297 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Denny, J. C., Van Driest, S. L., Wei, W. Q. & Roden, D. M. The influence of big (clinical) data and genomics on precision medicine and drug development. Clin. Pharmacol. Ther. 103, 409–418 (2018).

    Article  PubMed  Google Scholar 

  68. Blackburn, M., Alexander, J., Legan, J. D. & Klabjan, D. Big data and the future of R&D management: the rise of big data and big data analytics will have significant implications for R&D and innovation management in the next decade. Res. Technol. Manag. 60, 43–51 (2017).

    Article  Google Scholar 

  69. Power, A., Berger, A. C. & Ginsburg, G. S. Genomics-enabled drug repositioning and repurposing. JAMA 311, 2063 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Li, J. et al. A survey of current trends in computational drug repositioning. Brief. Bioinform. 17, 2–12 (2016).

    Article  PubMed  Google Scholar 

  71. Lamb, J. et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Dudley, J. T. et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl Med. 3, 96ra76 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Crockett, S. D., Schectman, R., Stürmer, T. & Kappelman, M. D. Topiramate use does not reduce flares of inflammatory bowel disease. Dig. Dis. Sci. 59, 1535–1543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hashimoto, R. E., Brodt, E. D., Skelly, A. C. & Dettori, J. R. Administrative database studies: goldmine or goose chase? Evid. Based Spine Care J. 5, 74–76 (2014).

    Article  Google Scholar 

  75. Bezin, J. et al. The national healthcare system claims databases in France, SNIIRAM and EGB: powerful tools for pharmacoepidemiology. Pharmacoepidemiol. Drug Saf. 26, 954–962 (2017).

    Article  PubMed  Google Scholar 

  76. Moulis, G. et al. French health insurance databases: what interest for medical research? Rev. Med. Interne 36, 411–417 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Tuppin, P., de Roquefeuil, L., Weill, A., Ricordeau, P. & Merlière, Y. French national health insurance information system and the permanent beneficiaries sample. Rev. Epidemiol. Sante Publique 58, 286–290 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Tuppin, P. et al. Value of a national administrative database to guide public decisions: from the système national d’information interrégimes de l’Assurance Maladie (SNIIRAM) to the système national des données de santé (SNDS) in France. Rev. Epidemiol. Sante Publique 65, S149–S167 (2017).

    Article  PubMed  Google Scholar 

  79. Blotière, P. O. et al. Conditions of prescription of anti-TNF agents in newly treated patients with inflammatory bowel disease in France (2011–2013). Dig. Liver Dis. 48, 620–625 (2016).

    Article  PubMed  Google Scholar 

  80. Lemaitre, M. et al. Association between use of thiopurines or tumor necrosis factor antagonists alone or in combination and risk of lymphoma in patients with inflammatory bowel disease. JAMA 318, 1679 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Medicines and Healthcare products Regulatory Agency. The General Practice Research Database (GPRD) — further infromation for patients. NHS Scotland http://www.erskinepractice.scot.nhs.uk/website/S11486/files/GPRD_PatientLeaflet.pdf (2010).

  82. Lewis, J. D., Brensinger, C., Bilker, W. B. & Strom, B. L. Validity and completeness of the General Practice Research Database for studies of inflammatory bowel disease. Pharmacoepidemiol. Drug Saf. 11, 211–218 (2002).

    Article  PubMed  Google Scholar 

  83. Ludvigsson, J. F. et al. External review and validation of the Swedish national inpatient register. BMC Public Health 11, 450 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  84. SWIBREG. Swedish Inflammatory Bowel Disease Registry. SWIBREG http://www.swibreg.se/ (2018).

  85. Jakobsson, G. L. et al. Validating inflammatory bowel disease (IBD) in the Swedish National Patient Register and the Swedish Quality Register for IBD (SWIBREG). Scand. J. Gastroenterol. 52, 216–221 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Schmidt, M. et al. The Danish National patient registry: a review of content, data quality, and research potential. Clin. Epidemiol. 7, 449–490 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kreis, K., Neubauer, S., Klora, M., Lange, A. & Zeidler, J. Status and perspectives of claims data analyses in Germany — a systematic review. Health Policy 120, 213–226 (2016).

    Article  PubMed  Google Scholar 

  88. Cheng, C.-L. et al. Validation of acute myocardial infarction cases in the national health insurance research database in taiwan. J. Epidemiol. 24, 500–507 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lichtman, J. H., Leifheit-Limson, E. C. & Goldstein, L. B. Centers for medicare and medicaid services medicare data and stroke research: goldmine or landmine? Stroke 46, 598–604 (2015).

    Article  PubMed  Google Scholar 

  90. Boyko, E. J., Koepsell, T. D., Gaziano, J. M., Horner, R. D. & Feussner, J. R. US Department of Veterans Affairs medical care system as a resource to epidemiologists. Am. J. Epidemiol. 151, 307–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. National Conference of State Legislatures. Collecting health data: all-payers claims databases. NCSL http://www.ncsl.org/research/health/collecting-health-data-all-payer-claims-database.aspx (2018).

  92. All-Payer Claims Database Council. APCD Council. APCD Council https://www.apcdcouncil.org/ (2018).

  93. US Department of Health & Human Services. Health information privacy. HHS https://www.hhs.gov/hipaa/index.html (2018).

  94. Ross, M. K., Wei, W. & Ohno-Machado, L. “Big data” and the electronic health record. Yearb. Med. Inform. 9, 97–104 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Austin, C. & Kusumoto, F. The application of Big Data in medicine: current implications and future directions. J. Interv. Card. Electrophysiol. 47, 51–59 (2016).

    Article  PubMed  Google Scholar 

  96. Luo, Y. et al. Natural language processing for EHR-based pharmacovigilance: a structured review. Drug Saf. 40, 1075–1089 (2017).

    Article  PubMed  Google Scholar 

  97. Zeng, Z., Deng, Y., Li, X., Naumann, T. & Luo, Y. Natural language processing for EHR-based computational phenotyping. IEEE ACM Trans. Comput. Biol. Bioinform. https://doi.org/10.1109/TCBB.2018.2849968 (2018).

    Article  PubMed  Google Scholar 

  98. Waljee, A. K. et al. Machine learning algorithms for objective remission and clinical outcomes with thiopurines. J. Crohns Colitis 108, 1723–1730 (2017).

    Google Scholar 

  99. Cai, T. et al. The association between arthralgia and vedolizumab using natural language processing. Inflamm. Bowel Dis. 24, 2242–2246 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Krumholz, H. M. & Peterson, E. D. Open access to clinical trials data. JAMA 312, 1002–1003 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Taichman, D. B. et al. Sharing clinical trial data — a proposal from the International Committee of Medical Journal Editors. N. Engl. J. Med. 374, 384–386 (2016).

    Article  PubMed  Google Scholar 

  102. Bertagnolli, M. M. et al. Advantages of a truly open-access data-sharing model. N. Engl. J. Med. 376, 1178–1181 (2017).

    Article  PubMed  Google Scholar 

  103. Navar, A. M., Pencina, M. J., Rymer, J. A., Louzao, D. M. & Peterson, E. D. Use of open access platforms for clinical trial data. JAMA 315, 1283 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Clinical Study Data Request. Clinical Study Data Request. CSDR https://clinicalstudydatarequest.com/Default.aspx (2018).

  105. Waljee, A. K. et al. Predicting corticosteroid-free endoscopic remission with vedolizumab in ulcerative colitis. Aliment. Pharmacol. Ther. 47, 763–772 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Elriz, K. et al. Incidence, presentation, and prognosis of small bowel adenocarcinoma in patients with small bowel Crohn’s disease: a prospective observational study. Inflamm. Bowel Dis. 19, 1823–1826 (2013).

    PubMed  Google Scholar 

  107. Henriksen, M. et al. Ulcerative colitis and clinical course: results of a 5-year population-based follow-up study (the IBSEN study). Inflamm. Bowel Dis. 12, 543–550 (2006).

    Article  PubMed  Google Scholar 

  108. Hovde, Ø. et al. Malignancies in patients with inflammatory bowel disease: results from 20 years of follow-up in the IBSEN study. J. Crohns Colitis 11, 571–577 (2016).

    Google Scholar 

  109. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02377258 (2016).

  110. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03282903 (2018).

  111. Mayo, C. S. et al. Big data in designing clinical trials: opportunities and challenges. Front. Oncol. 7, 187 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Angus, D. C. Fusing randomized trials with big data: the key to self-learning health care systems? JAMA 314, 767–768 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Perrin, A. Social media usage: 2005–2015. Pew Research Center http://www.pewinternet.org/2015/10/08/social-networking-usage-2005-2015/ (2015).

  114. Veríssimo, J. M. C. Usage intensity of mobile medical apps: a tale of two methods. J. Bus. Res. 89, 442–447 (2017).

    Article  Google Scholar 

  115. Chou, W. S., Prestin, A., Lyons, C. & Wen, K. Web 2.0 for health promotion: reviewing the current evidence. Am. J. Public Health 103, e9–e18 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Orozco-Beltran, D., Sánchez-Molla, M., Sanchez, J. J. & Mira, J. J., ValCrònic Research Group. Telemedicine in primary care for patients with chronic conditions: the ValCrònic Quasi-Experimental Study. J. Med. Internet Res. 19, e400 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Jackson, B. D., Con, D. & De Cruz, P. Design considerations for an eHealth decision support tool in inflammatory bowel disease self-management. Intern. Med. J. 48, 674–681 (2017).

    Article  Google Scholar 

  118. Boelle, P.-Y., Thiébaut, R. & Costagliola, D. Données massives, vous avez dit données massives? Quest. Santé Publique 30, 1–4 (2015).

    Google Scholar 

  119. De Jong, M. et al. Development and feasibility study of a telemedicine tool for all patients with IBD: MyIBDcoach. Inflamm. Bowel Dis. 23, 485–493 (2017).

    Article  PubMed  Google Scholar 

  120. Jackson, B. D., Gray, K., Knowles, S. R. & De Cruz, P. EHealth technologies in inflammatory bowel disease: a systematic review. J. Crohns Colitis 10, 1103–1121 (2016).

    Article  PubMed  Google Scholar 

  121. Jaboli, F., Pouillon, L., Bossuyt, P., Danese, S. & Peyrin-Biroulet, L. Telehealth in inflammatory bowel disease: every patient may need a coach! Gastroenterology 154, 1196–1198 (2018).

    Article  PubMed  Google Scholar 

  122. Cross, R. K., Cheevers, N., Rustgi, A., Langenberg, P. & Finkelstein, J. Randomized, controlled trial of home telemanagement in patients with ulcerative colitis (UC HAT). Inflamm. Bowel Dis. 18, 1018–1025 (2012).

    Article  PubMed  Google Scholar 

  123. Elkjaer, M. et al. E-Health empowers patients with ulcerative colitis: a randomised controlled trial of the web-guided “Constant-care” approach. Gut 59, 1652–1661 (2010).

    Article  PubMed  Google Scholar 

  124. Cross, R. K. et al. A randomized controlled trial of telemedicine for patients with inflammatory bowel disease (Tele-IBD) [abstract 903]. Gastroenterology 154, S177 (2018).

    Article  Google Scholar 

  125. Bossuyt, P., Pouillon, L. & Peyrin-Biroulet, L. Primetime for e-health in IBD? Nat. Rev. Gastroenterol. Hepatol. 14, 133–134 (2017).

    Article  PubMed  Google Scholar 

  126. Bello, C. et al. Usability of a home-based test for the measurement of fecal calprotectin in asymptomatic IBD patients. Dig. Liver Dis. 49, 991–996 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Heida, A. et al. Agreement between home-based measurement of stool calprotectin and ELISA results for monitoring inflammatory bowel disease activity. Clin. Gastroenterol. Hepatol. 15, 1742–1749 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Mgudlwa, S. & Iyamu, T. Integration of social media with healthcare big data for improved service delivery. SA J. Inf. Manag. 20, 1–8 (2018).

    Google Scholar 

  129. Martinez, B. et al. Patient understanding of the risks and benefits of biologic therapies in inflammatory bowel disease: insights from a large-scale analysis of social media platforms. Inflamm. Bowel Dis. 23, 1057–1064 (2017).

    Article  PubMed  Google Scholar 

  130. Panes, J. et al. Imaging techniques for assessment of inflammatory bowel disease: joint ECCO and ESGAR evidence-based consensus guidelines. J. Crohns Colitis 7, 556–585 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Belle, A. et al. Big data analytics in healthcare. Biomed. Res. Int. 2015, 370194 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Dilsizian, S. E. & Siegel, E. L. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr. Cardiol. Rep. 16, 441 (2014).

    Article  PubMed  Google Scholar 

  133. Landewé, R. B. M. & van der Heijde, D. “Big data” in rheumatology: intelligent data modeling improves the quality of imaging data. Rheum. Dis. Clin. North Am. 44, 307–315 (2018).

    Article  PubMed  Google Scholar 

  134. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article�� CAS  PubMed  PubMed Central  Google Scholar 

  135. Anderson, C. A. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43, 246–252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547, 173–178 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Abreu, M. T. et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 123, 679–688 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Ellinghaus, D., Bethune, J., Petersen, B. S. & Franke, A. The genetics of Crohn’s disease and ulcerative colitis-status quo and beyond. Scand. J. Gastroenterol. 50, 13–23 (2014).

    Article  CAS  Google Scholar 

  140. Mirkov, M. U., Verstockt, B. & Cleynen, I. Genetics of inflammatory bowel disease: beyond NOD2. Lancet Gastroenterol. Hepatol. 2, 224–234 (2017).

    Google Scholar 

  141. Lees, C. W., Barrett, J. C., Parkes, M. & Satsangi, J. New IBD genetics: common pathways with other diseases. Gut 60, 1739–1753 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Ye, B. D. & McGovern, D. P. B. Genetic variation in IBD: progress, clues to pathogenesis and possible clinical utility. Expert Rev. Clin. Immunol. 12, 1091–1107 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ellinghaus, D. et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 48, 510–518 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zuo, T., Kamm, M. A., Colombel, J. F. & Ng, S. C. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 15, 440–452 (2018).

    Article  PubMed  Google Scholar 

  145. SYSCID. SYSCID — a systems medicine approach to chronic inflammatory diseases. SYSCID https://syscid.eu (2018).

  146. Schultze, J. L. & Rosenstiel, P. The SYSCID Consortium. Systems medicine in chronic inflammatory diseases. Immunity 48, 608–613 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Gedela, S. Integration, warehousing, and analysis strategies of Omics data. Methods Mol. Biol. 719, 399–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Berger, B., Peng, J. & Singh, M. Computational solutions for omics data. Nat. Rev. Genet. 14, 333–346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fiocchi, C. Integrating omics: the future of IBD? Dig. Dis. 32, 96–102 (2014).

    Article  PubMed  Google Scholar 

  150. Chuong, K. H., Mack, D. R., Stintzi, A. & O’Doherty, K. C. Human microbiome and learning healthcare systems: integrating research and precision medicine for inflammatory bowel disease. OMICS 22, 119–126 (2017).

    Article  PubMed  CAS  Google Scholar 

  151. Shah, N. D. et al. Big data and predictive analytics recalibrating expectations. JAMA 320, 27–28 (2018).

    Article  PubMed  Google Scholar 

  152. Genta, R. M. & Sonnenberg, A. Big data in gastroenterology research. Nat. Rev. Gastroenterol. Hepatol. 11, 386–390 (2014).

    Article  PubMed  Google Scholar 

  153. Waljee, A. K., Sauder, K., Zhang, Y., Zhu, J. & Higgins, P. D. R. External validation of a thiopurine monitoring algorithm on the SONIC clinical trial dataset. Clin. Gastroenterol. Hepatol. 16, 449–451 (2018).

    Article  PubMed  Google Scholar 

  154. Waljee, A. K. et al. Predicting hospitalization and outpatient corticosteroid use in inflammatory bowel disease patients using machine learning. Inflamm. Bowel Dis. 24, 45–53 (2018).

    Article  Google Scholar 

  155. Wei, Z. et al. Large sample size, wide variant spectrum, and advanced machine-learning technique boost risk prediction for inflammatory bowel disease. Am. J. Hum. Genet. 92, 1008–1012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Menti, E. et al. Bayesian machine learning techniques for revealing complex interactions among genetic and clinical factors in association with extra-intestinal Manifestations in IBD patients. AMIA Annu. Symp. Proc. 2016, 884–893 (2016).

    CAS  PubMed  Google Scholar 

  157. Han, L. et al. A probabilistic pathway score (PROPS) for classification with applications to inflammatory bowel disease. Bioinformatics 34, 985–993 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Hou, J. K. et al. Automated identification of surveillance colonoscopy in inflammatory bowel disease using natural language processing. Dig. Dis. Sci. 58, 936–941 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Reviewer information

Nature Reviews Gastroenterology & Hepatology thanks R. Panaccione, X. Roblin and S. Vavricka for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

L.P.-B., P.O., N.J. and G.N. researched data for the article. L.P.-B., P.O., S.D. and G.N. made substantial contributions to discussion of content for the article. L.P.-B., P.O., N.J. and G.N. wrote the article, and L.P.-B., P.O., S.D. and G.N. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Laurent Peyrin-Biroulet.

Ethics declarations

Competing interests

P.O. has received financial support for research from Abbvie, Ferring and Takeda and lecture and consulting fees from Abbvie and Takeda. S.D. has received speaking, consultancy or advisory board member fees from Abbvie, Allergan, Biogen, Boehringer-Ingelheim, Celgene, Celltrion, Ferring, Hospira, Johnson and Johnson, Merck, MSD, Mundipharma, Pfizer, Sandoz, Takeda, TiGenix, UCB Pharma and Vifor. L.P.-B. has received consulting fees from Abbvie, Amgen, Biogaran, Boehringer-Ingelheim, Bristol-Myers Squibb, Celltrion, Ferring, Genentech, HAC Pharma, Hospira, Index Pharmaceuticals, Janssen, Lilly, Merck, Mitsubishi, Norgine, Pfizer, Pharmacosmos, Pilege, Sandoz, Takeda, Therakos, Tillotts, UCB Pharma and Vifor and lecture fees from Abbvie, Ferring, HAC Pharma, Janssen, Merck, Mitsubishi, Norgine, Takeda, Therakos, Tillotts and Vifor. N.J. and G.N. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivera, P., Danese, S., Jay, N. et al. Big data in IBD: a look into the future. Nat Rev Gastroenterol Hepatol 16, 312–321 (2019). https://doi.org/10.1038/s41575-019-0102-5

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41575-019-0102-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing