Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10425 publications
Preview abstract
Julia's strength in mathematical computation and high performance makes it a popular choice across scientific fields, mostly due to its focus on mathematics in a broad sense and execution performance. It is a language of choice to implement new numerical algorithms, but it really shines in modelling for optimisation thanks to JuMP.jl and MathOptInterface.jl.
These libraries are, first and foremost, made for mathematical optimisation (linear, mixed-integer, conic, etc.), yet they are now generic enough to support more paradigms, such as constraint programming. This talk will introduce the basic principles behind the current implementation of JuMP.jl and explain why and how they are very good matches for modelling using constraint programming… and solving using any kind of mixed-integer-programming solver.
Constraint-programming solvers can also be implemented using linear programming, in a great collaboration between discrete and continuous optimisation. This talk will briefly explain the connection and its implementation in Google’s CP-SAT, a leading, award-winning constraint solver that uses linear programs in its solving process — a solver that will soon be available in Julia too.
View details
Databases in the Era of Memory-Centric Computing
Yannis Chronis
Anastasia Ailamaki
Lawrence Benson
Helena Caminal
Jana Gičeva
Eric Seldar
Lisa Wu Wills
2025
Preview abstract
The increasing disparity between processor core counts and memory bandwidth, coupled with the rising cost and underutilization of memory, introduces a performance and cost Memory Wall and presents a significant challenge to the scalability of database systems. We argue that current processor-centric designs are unsustainable, and we advocate for a shift towards memory-centric computing, where disaggregated memory pools enable cost-effective scaling and robust performance. Database systems are uniquely positioned to leverage memory-centric systems because of their intrinsic data-centric nature. We demonstrate how memory-centric database operations can be realized with current hardware, paving the way for more efficient and scalable data management in the cloud.
View details
Sufficient Context: A New Lens on Retrieval Augmented Generation Systems
Hailey Joren
Jianyi Zhang
Chun-Sung Ferng
Ankur Taly
International Conference on Learning Representations (ICLR) (2025)
Preview abstract
Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a method to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that larger models with higher baseline performance (Gemini 1.5 Pro, GPT 4o, Claude 3.5) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, smaller models with lower baseline performance (Llama 3.1, Mistral 3, Gemma 2) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2--10% for Gemini, GPT, and Gemma.
View details
Toward Sensor-In-the-Loop LLM Agent: Benchmarks and Implications
Zhiwei Ren
Junbo Li
Minjia Zhang
Di Wang
Longfei Shangguan
SenSys 2025 - The 23rd ACM Conference on Embedded Networked Sensor Systems (2025)
Preview abstract
This paper advocates for sensor-informed personal agents that can take advantage of sensor hints on wearables to enhance the personal agent's response. We demonstrate that such a sensor-in-the-loop design paradigm can be easily integrated into existing LLM agents by building a prototype named WellMax based on existing well-developed techniques such as structured prompt tuning and few-shot prompting. The head-to-head comparison with a non-sensor-informed agent across five use scenarios demonstrates that this sensor-in-the-loop design can effectively improve users' needs and their overall experience. The deep-dive into agents' replies and participants' feedback further reveals that sensor-in-the-loop agents not only provide more contextually relevant responses but also exhibit a greater understanding of user priorities and situational nuances. We further conduct two case studies to examine the potential pitfalls and distill key insights from this sensor-in-the-loop agent. We believe this work sets the stage for more intelligent, empathetic, and effective interactions in future AI-driven personal assistants.
View details
Concerns Beyond the Accuracy of AI Output
DORA, Google (2025)
Preview abstract
Generative AI's potential for hallucinations and inaccuracies are by far the most discussed limitation in AI-assisted software development. But, whether developers have other concerns about using generative AI in their coding practice has not been thoroughly explored. This article describes the results of in-depth interviews with developers about their other concerns about generative AI in coding, beyond the tools accuracy, and discusses related policy implications for organizations developing software.
View details
Security Signals: Making Web Security Posture Measurable At Scale
David Dworken
Artur Janc
Santiago (Sal) Díaz
Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb)
Preview abstract
The area of security measurability is gaining increased attention, with a wide range of organizations calling for the development of scalable approaches for assessing the security of software systems and infrastructure. In this paper, we present our experience developing Security Signals, a comprehensive system providing security measurability for web services, deployed in a complex application ecosystem of thousands of web services handling traffic from billions of users. The system collects security-relevant information from production HTTP traffic at the reverse proxy layer, utilizing novel concepts such as synthetic signals augmented with additional risk information to provide a holistic view of the security posture of individual services and the broader application ecosystem. This approach to measurability has enabled large-scale security improvements to our services, including prioritized rollouts of security enhancements and the implementation of automated regression monitoring. Furthermore, it has proven valuable for security research and prioritization of defensive work. Security Signals addresses shortcomings of prior web measurability proposals by tracking a comprehensive set of security properties relevant to web applications, and by extracting insights from collected data for use by both security experts and non-experts. We believe the lessons learned from the implementation and use of Security Signals offer valuable insights for practitioners responsible for web service security, potentially inspiring new approaches to web security measurability.
View details
Online Bidding under RoS Constraints without Knowing the Value
Sushant Vijayan
Swati Padmanabhan
The Web Conference (2025)
Preview abstract
We consider the problem of auto-bidding in online advertising from the perspective of a single advertiser. The goal of the advertiser is to maximize their value under the Return-on-Spend (RoS) constraint, with performance measured in terms of \emph{regret} against the optimal offline solution that knows all queries a priori. Importantly, the value of the item is \textit{unknown} to the bidder ahead of time. The goal of the bidder is to quickly identify the optimal bid, while simultaneously satisfying budget and RoS constraints. Using a simple UCB-style algorithm, we provide the first result which achieves optimal regret and constraint violation for this problem.
View details
Record Number of Members Visit U.S. Congress to Talk Tech Policy
IEEE Spectrum (2025)
Preview abstract
This IEEE Spectrum article reflects on advocacy for U.S. technological leadership during my Congressional visit through IEEE-USA. Leading an expert group of other distinguished IEEE members, we urged lawmakers to support critical initiatives. Key priorities included sustained funding for federal research institutions like NIST, NASA, and the NSF, reauthorizing the SBIR/STTR programs vital for small business innovation, and passing the CREATE AI Act to democratize AI resources by establishing the National AI Research Resource (NAIRR).
We also emphasized strengthening the STEM talent pipeline through the CHIPS and Science Act and expanding high-skilled immigrant visas. We highlighted rapid AI advancements, such as autonomous vehicles, the surge in FDA-approved AI based medical devices, as underscoring the need for these strategic investments and policy actions. The article conveys a sense of urgency, calling for concrete congressional action to ensure the U.S. maintains its technological edge while also sharing my personal experiences.
View details
Preview abstract
This paper presents SYMBIOSIS, an AI-powered framework to make Systems Thinking accessible for addressing societal challenges and unlock paths for leveraging systems thinking framework to improve AI systems. The platform establishes a centralized, open-source repository of systems thinking/system dynamics models categorized by Sustainable Development Goals (SDGs) and societal topics using topic modeling and classification techniques. Systems Thinking resources, though critical for articulating causal theories in complex problem spaces, are often locked behind specialized tools and intricate notations, creating high barriers to entry. To address this, we developed a generative co-pilot that translates complex systems representations - such as causal loops and stock-flow diagrams - into natural language (and vice-versa), allowing users to explore and build models without extensive technical training.
Rooted in community-based system dynamics (CBSD) and informed by community-driven insights on societal context, we aim to bridge the problem understanding chasm. This gap, driven by epistemic uncertainty, often limits ML developers who lack the community-specific knowledge essential for problem understanding and formulation, often leading to misaligned causal theories and reduced intervention effectiveness. Recent research identifies causal and abductive reasoning as crucial frontiers for AI, and Systems Thinking provides a naturally compatible framework for both. By making Systems Thinking frameworks more accessible and user-friendly, we aim to serve as a foundational step to unlock future research into Responsible and society-centered AI that better integrates societal context leveraging systems thinking framework and models. Our work underscores the need for ongoing research into AI's capacity essential system dynamics such as feedback processes and time delays, paving the way for more socially attuned, effective AI systems.
View details
Fast electronic structure quantum simulation by spectrum amplification
Guang Hao Low
Robbie King
Dominic Berry
Qiushi Han
Albert Eugene DePrince III
Alec White
Rolando Somma
arXiv:2502.15882 (2025)
Preview abstract
The most advanced techniques using fault-tolerant quantum computers to estimate the ground-state energy of a chemical Hamiltonian involve compression of the Coulomb operator through tensor factorizations, enabling efficient block-encodings of the Hamiltonian. A natural challenge of these methods is the degree to which block-encoding costs can be reduced. We address this challenge through the technique of spectrum amplification, which magnifies the spectrum of the low-energy states of Hamiltonians that can be expressed as sums of squares. Spectrum amplification enables estimating ground-state energies with significantly improved cost scaling in the block encoding normalization factor $\Lambda$ to just $\sqrt{2\Lambda E_{\text{gap}}}$, where $E_{\text{gap}} \ll \Lambda$ is the lowest energy of the sum-of-squares Hamiltonian. To achieve this, we show that sum-of-squares representations of the electronic structure Hamiltonian are efficiently computable by a family of classical simulation techniques that approximate the ground-state energy from below. In order to further optimize, we also develop a novel factorization that provides a trade-off between the two leading Coulomb integral factorization schemes-- namely, double factorization and tensor hypercontraction-- that when combined with spectrum amplification yields a factor of 4 to 195 speedup over the state of the art in ground-state energy estimation for models of Iron-Sulfur complexes and a CO$_{2}$-fixation catalyst.
View details
AI as a Catalyst for Educational Equity: Addressing Global Teacher Shortages and Learning Disparities
International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCERT) (2025)
Preview abstract
The global education system is grappling with a critical shortage of teachers, threatening the achievement of universal quality education. This article examines how artificial intelligence (AI) technologies can revolutionize educational access and equity by addressing these systemic challenges. Through a comprehensive article analysis of AI-enabled solutions, including personalized learning mechanisms, virtual tutoring systems, and intelligent content distribution platforms, the article explores the transformative potential of these technologies in democratizing education. The article investigates the implementation of AI across established educational platforms, examining their effectiveness in providing adaptive learning experiences, breaking down language barriers, and ensuring cultural relevance. The article demonstrates that strategic AI integration can significantly impact learning outcomes while helping to bridge the global teacher shortage gap. The article also addresses critical implementation challenges, providing policy recommendations and resource allocation frameworks for successful AI adoption in education systems worldwide. This article analysis contributes to the growing body of knowledge on educational technology by offering practical insights into how AI can be leveraged to create more inclusive, effective, and accessible learning environments, ultimately advancing the goal of quality education for all.
View details
ESAM++: Efficient Online 3D Perception on the Edge
Qin Liu
Lavisha Aggarwal
Vikas Bahirwani
Lin Li
Aleksander Holynski
Saptarashmi Bandyopadhyay
Zhengyang Shen
Marc Niethammer
Ehsan Adeli
Andrea Colaco
2025
Preview abstract
Online 3D scene perception in real time is critical for robotics, AR/VR, and autonomous systems, particularly in edge computing scenarios where computational resources are limited. Recent state-of-the-art methods like EmbodiedSAM (ESAM) demonstrate the promise of online 3D perception by leveraging the 2D visual foundation model (VFM) with efficient 3D query lifting and merging. However, ESAM depends on a computationally expensive sparse 3D U-Net for point cloud feature extraction, which we identify as the primary efficiency bottleneck. In this paper, we propose a lightweight and scalable alternative for online 3D scene perception tailored to edge devices. Our method introduces a 3D Sparse FeaturePyramid Network (SFPN) that efficiently captures multi-scale geometric features from streaming 3D point clouds while significantly reducing computational over-head and model size. We evaluate our approach on four challenging segmentation benchmarks—ScanNet, ScanNet200, SceneNN, and 3RScan—demonstrating that our model achieves competitive accuracy with up to 3×faster inference and 3×small model size compared to ESAM, enabling practical deployment in real-world edge scenarios. Code and models will be released.
View details
Preview abstract
Recent work suggested utilizing inference compute, showing that scaling of number of samples consistently improves the fractions of problems solved by any attempt, namely the coverage. In this work, we suggest that inference scaling gains should be compared with proper baselines, as some datasets become degenerate when allowing a large number of attempts. We focus on two domains - mathematical reasoning and factual knowledge, showing that for the MATH and Entity Questions datasets, informed answer enumeration obtains similar or even better results than repeated model sampling, with a much lower sample budget. While we believe that inference scaling is a promising approach for unlocking the potential of language models, we recommend carefully selecting models and datasets when applying this method. Otherwise, the results of inference scaling should be interpreted with caution.
View details
Preview abstract
Many AI applications of interest require specialized multi-modal models. Yet, relevant data for training these models is inherently scarce. Human annotation is prohibitively expensive, error-prone, and time-consuming. Meanwhile, existing synthetic data generation methods often rely on manual prompts, evolutionary algorithms, or extensive seed data from the target distribution - limiting scalability and control. In this paper, we introduce Simula, a novel, seedless framework that balances global and local reasoning to generate synthetic datasets. We utilize taxonomies to capture a global coverage space and use a series of agentic refinements to promote local diversity and complexity. Our approach allows users to define desired dataset characteristics through an explainable and controllable process, without relying on seed data. This unlocks new opportunities for developing and deploying AI in domains where data scarcity or privacy concerns are paramount.
View details
Mitigating Clinician Information Overload: Generative AI for Integrated EHR and RPM Data Analysis
Shashank Kapoor
Aman Raj
2025
Preview abstract
Generative AI (GenAI), particularly Large Language Models (LLMs), offer powerful capabilities for interpreting the complex data landscape in healthcare. In this paper, we present a comprehensive overview of the capabilities, requirements and applications of GenAI for deriving clinical insights and improving clinical efficiency. We first provide some background on the forms and sources of patient data, namely real-time Remote Patient Monitoring (RPM) streams and traditional Electronic Health Records (EHR). The sheer volume and heterogeneity of this combined data present significant challenges to clinicians and contribute to information overload.
In addition, we explore the potential of LLM-powered applications for improving clinical efficiency. These applications can enhance navigation of longitudinal patient data and provide actionable clinical decision support through natural language dialogue. We discuss the opportunities this presents for streamlining clinician workflows and personalizing care, alongside critical challenges such as data integration complexity, ensuring data quality and RPM data reliability, maintaining patient privacy, validating AI outputs for clinical safety, mitigating bias, and ensuring clinical acceptance. We believe this work represents the first summarization of GenAI techniques for managing clinician data overload due to combined RPM / EHR data complexities.
View details