PredictionGuardEmbeddings
Prediction Guard is a secure, scalable GenAI platform that safeguards sensitive data, prevents common AI malfunctions, and runs on affordable hardware.
Overview​
Integration details​
This integration shows how to use the Prediction Guard embeddings integration with Langchain. This integration supports text and images, separately or together in matched pairs.
Setup​
To access Prediction Guard models, contact us here to get a Prediction Guard API key and get started.
Credentials​
Once you have a key, you can set it with
import os
os.environ["PREDICTIONGUARD_API_KEY"] = "<Prediction Guard API Key"
Installation​
%pip install --upgrade --quiet langchain-predictionguard
Instantiation​
First, install the Prediction Guard and LangChain packages. Then, set the required env vars and set up package imports.
from langchain_predictionguard import PredictionGuardEmbeddings
embeddings = PredictionGuardEmbeddings(model="bridgetower-large-itm-mlm-itc")
Prediction Guard embeddings generation supports both text and images. This integration includes that support spread across various functions.
Indexing and Retrieval​
# Create a vector store with a sample text
from langchain_core.vectorstores import InMemoryVectorStore
text = "LangChain is the framework for building context-aware reasoning applications."
vectorstore = InMemoryVectorStore.from_texts(
[text],
embedding=embeddings,
)
# Use the vectorstore as a retriever
retriever = vectorstore.as_retriever()
# Retrieve the most similar text
retrieved_documents = retriever.invoke("What is LangChain?")
# Show the retrieved document's content
retrieved_documents[0].page_content
'LangChain is the framework for building context-aware reasoning applications.'
Direct Usage​
The vectorstore and retriever implementations are calling embeddings.embed_documents(...)
and embeddings.embed_query(...)
to create embeddings from the texts used in the from_texts
and retrieval invoke
operations.
These methods can be directly called with the following commands.
Embed single texts​
# Embedding a single string
text = "This is an embedding example."
single_vector = embeddings.embed_query(text)
single_vector[:5]
[0.01456777285784483,
-0.08131945133209229,
-0.013045587576925755,
-0.09488929063081741,
-0.003087474964559078]
Embed multiple texts​
# Embedding multiple strings
docs = [
"This is an embedding example.",
"This is another embedding example.",
]
two_vectors = embeddings.embed_documents(docs)
for vector in two_vectors:
print(vector[:5])
[0.01456777285784483, -0.08131945133209229, -0.013045587576925755, -0.09488929063081741, -0.003087474964559078]
[-0.0015021917643025517, -0.08883760124444962, -0.0025286630261689425, -0.1052245944738388, 0.014225339516997337]
Embed single images​
# Embedding a single image. These functions accept image URLs, image files, data URIs, and base64 encoded strings.
image = [
"https://farm4.staticflickr.com/3300/3497460990_11dfb95dd1_z.jpg",
]
single_vector = embeddings.embed_images(image)
print(single_vector[0][:5])
[0.0911610797047615, -0.034427884966135025, 0.007927080616354942, -0.03500846028327942, 0.022317267954349518]
Embed multiple images​
# Embedding multiple images
images = [
"https://fastly.picsum.photos/id/866/200/300.jpg?hmac=rcadCENKh4rD6MAp6V_ma-AyWv641M4iiOpe1RyFHeI",
"https://farm4.staticflickr.com/3300/3497460990_11dfb95dd1_z.jpg",
]
two_vectors = embeddings.embed_images(images)
for vector in two_vectors:
print(vector[:5])
[0.1593627631664276, -0.03636132553219795, -0.013229663483798504, -0.08789524435997009, 0.062290553003549576]
[0.0911610797047615, -0.034427884966135025, 0.007927080616354942, -0.03500846028327942, 0.022317267954349518]
Embed single text-image pairs​
# Embedding a single text-image pair
inputs = [
{
"text": "This is an embedding example.",
"image": "https://farm4.staticflickr.com/3300/3497460990_11dfb95dd1_z.jpg",
},
]
single_vector = embeddings.embed_image_text(inputs)
print(single_vector[0][:5])
[0.0363212488591671, -0.10172265768051147, -0.014760786667466164, -0.046511903405189514, 0.03860781341791153]
Embed multiple text-image pairs​
# Embedding multiple text-image pairs
inputs = [
{
"text": "This is an embedding example.",
"image": "https://fastly.picsum.photos/id/866/200/300.jpg?hmac=rcadCENKh4rD6MAp6V_ma-AyWv641M4iiOpe1RyFHeI",
},
{
"text": "This is another embedding example.",
"image": "https://farm4.staticflickr.com/3300/3497460990_11dfb95dd1_z.jpg",
},
]
two_vectors = embeddings.embed_image_text(inputs)
for vector in two_vectors:
print(vector[:5])
[0.11867266893386841, -0.05898813530802727, -0.026179173961281776, -0.10747235268354416, 0.07684746384620667]
[0.026654226705431938, -0.10080841928720474, -0.012732953764498234, -0.04365091398358345, 0.036743905395269394]
API Reference​
For detailed documentation of all PredictionGuardEmbeddings features and configurations check out the API reference: https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.predictionguard.PredictionGuardEmbeddings.html
Related​
- Embedding model conceptual guide
- Embedding model how-to guides