Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 May 7;26(1):42.
doi: 10.1186/s10020-020-00172-4.

Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19?

Affiliations
Review

Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19?

Ulf Andersson et al. Mol Med. .

Abstract

Background: The 2019 novel coronavirus disease (COVID-19) causes for unresolved reasons acute respiratory distress syndrome in vulnerable individuals. There is a need to identify key pathogenic molecules in COVID-19-associated inflammation attainable to target with existing therapeutic compounds. The endogenous damage-associated molecular pattern (DAMP) molecule HMGB1 initiates inflammation via two separate pathways. Disulfide-HMGB1 triggers TLR4 receptors generating pro-inflammatory cytokine release. Extracellular HMGB1, released from dying cells or secreted by activated innate immunity cells, forms complexes with extracellular DNA, RNA and other DAMP or pathogen-associated molecular (DAMP) molecules released after lytic cell death. These complexes are endocytosed via RAGE, constitutively expressed at high levels in the lungs only, and transported to the endolysosomal system, which is disrupted by HMGB1 at high concentrations. Danger molecules thus get access to cytosolic proinflammatory receptors instigating inflammasome activation. It is conceivable that extracellular SARS-CoV-2 RNA may reach the cellular cytosol via HMGB1-assisted transfer combined with lysosome leakage. Extracellular HMGB1 generally exists in vivo bound to other molecules, including PAMPs and DAMPs. It is plausible that these complexes are specifically removed in the lungs revealed by a 40% reduction of HMGB1 plasma levels in arterial versus venous blood. Abundant pulmonary RAGE expression enables endocytosis of danger molecules to be destroyed in the lysosomes at physiological HMGB1 levels, but causing detrimental inflammasome activation at high levels. Stress induces apoptosis in pulmonary endothelial cells from females but necrosis in cells from males.

Conclusion: Based on these observations we propose extracellular HMGB1 to be considered as a therapeutic target for COVID-19.

Keywords: ARDS; COVID-19; HMGB1; Influenza; Pathogenesis; Pneumonia; RAGE; SARS-CoV-2; TLR4; Therapy.

PubMed Disclaimer

Conflict of interest statement

KT and UA have assigned patents to Feinstein Institute.

Figures

Fig. 1
Fig. 1
Inflammation induced by HMGB1-partner molecule complexes. Necrotic cells release DAMP and PAMP molecules extracellularly where they form complexes with HMGB1 released from dying or activated cells (1); these complexes bind to RAGE abundantly expressed in the lungs (2); and get endocytosed to endosomes having TLR receptors including TLR4 which may be activated by HMGB1 (3); HMGB1 and partner molecules translocate to lysosomes, where HMGB1 acts like a detergent under the acidic conditions and disrupts the lysosomal membrane enabling HMGB1-partner molecules access to the cytosol (4); the translocated molecules bind and activate reciprocal cytoplasmic receptors generating inflammasome activation and additional proinflammatory events (5); the subsequent outcome production and extracellular release of cytokines via pore formation in the cell surface membrane accomplished by oligomerized gasdermin D. The final outcome is pyroptosis. Active gasdermin D also rotates and translocates phosphatidylserine molecules to the outside of the cell surface membrane and induces tissue factor on endothelial cells. This biology initiates coagulation (6)
Fig. 2
Fig. 2
Options to ameliorate HMGB1-mediated inflammation relevant for COVID-19 via pharmaceutical compounds approved for HMGB1-independent indications. The formation of proinflammatory HMGB1-partner molecule complexes is counteracted by thrombomodulin, heparin, haptoglobin, and glycyrrhizin. RAGE-HMGB1-mediated activities are inhibited by acetylcholine, heparin, statins, dexmedetomidine, and ketamine. TLR4-HMGB1 mediated activation is downregulated by acetylcholine, heparin, statins, resveratrol, dexmedetomidine, and ketamine. HMGB1-mediated disruption of lysosomal membrane is constrained by chloroquine phosphate and hydroxychloroquine

References

    1. Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M, et al. The N- terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest. 2005;115(5):1267–1274. doi: 10.1172/JCI22782. - DOI - PMC - PubMed
    1. Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–162. doi: 10.1146/annurev-immunol-030409-101323. - DOI - PMC - PubMed
    1. Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med. 2012;209(6):1057–1068. doi: 10.1084/jem.20120571. - DOI - PMC - PubMed
    1. Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med. 2000;192(4):565–570. doi: 10.1084/jem.192.4.565. - DOI - PMC - PubMed
    1. Andersson U, Yang H, Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin Immunol. 2018;38:40–48. doi: 10.1016/j.smim.2018.02.011. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources