Abstract
The study of Greek papyri from ancient Egypt is fundamental for understanding Graeco-Roman Antiquity, offering insights into various aspects of ancient culture and textual production. Palaeography, traditionally used for dating these manuscripts, relies on identifying chronologically relevant features in handwriting styles yet lacks a unified methodology, resulting in subjective interpretations and inconsistencies among experts. Recent advances in digital palaeography, which leverage artificial intelligence (AI) algorithms, have introduced new avenues for dating ancient documents. This paper presents a comparative analysis between an AI-based computational dating model and human expert palaeographers, using a novel dataset named Hell-Date comprising securely fine-grained dated Greek papyri from the Hellenistic period. The methodology involves training a convolutional neural network on visual inputs from Hell-Date to predict precise dates of papyri. In addition, experts provide palaeographic dating for comparison. To compare, we developed a new framework for error analysis that reflects the inherent imprecision of the palaeographic dating method. The results indicate that the computational model achieves performance comparable to that of human experts. These elements will help assess on a more solid basis future developments of computational algorithms to date Greek papyri.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The dataset is accessible at the following link: https://d-scribes.philhist.unibas.ch/en/hell-date/.
- 2.
Papyri are cited according to Trismegistos (TM) Numbers, for which cf. [9] and https://www.trismegistos.org/about_how_to_cite.php.
- 3.
For a list of these resources, see the online description of the dataset: https://d-scribes.philhist.unibas.ch/en/hell-date/dataset/.
- 4.
The code published in the article is available at https://github.com/ipavlopoulos/palit.
- 5.
The values for individual respondents are accessible at the following link: https://d-scribes.philhist.unibas.ch/en/hell-date/.
References
Adam, K., Baig, A., Al-Maadeed, S., Bouridane, A., El-Menshawy, S.: Kertas: dataset for automatic dating of ancient Arabic manuscripts. Int. J. Doc. Anal. Recogn. (IJDAR) 21, 283–290 (2018)
Bagnall, R.S.: Practical help: chronology, geography, measures, currency, names, prosopography, and technical vocabulary. In: Bagnall, R.S. (ed.) The Oxford Handbook of Papyrology, pp. 179–196. Oxford University Press, Oxford (2009)
Baledent, A., Hiebel, N., Lejeune, G.: Dating ancient texts: an approach for noisy French documents. In: Sprugnoli, R., Passarotti, M. (eds.) Proceedings of LT4HALA 2020 - 1st Workshop on Language Technologies for Historical and Ancient Languages, pp. 17–21. European Language Resources Association (ELRA), Marseille, France (2020). https://aclanthology.org/2020.lt4hala-1.3
Bennett, C.: Alexandria and the Moon: An Investigation into the Lunar Macedonian Calendar of Ptolemaic Egypt. Peeters, Leuven (2011)
Cavallo, G.: La scrittura greca e latina dei papiri: una introduzione. F. Serra, Pisa, Rome (2008)
Cavallo, G.: Greek and Latin writing in the papyri. In: Bagnall, R.S. (ed.) The Oxford Handbook of Papyrology, pp. 101–148. Oxford University Press, Oxford (2009)
Choat, M.: Dating papyri: familiarity, instinct and guesswork. J. Study New Testament 42(1), 58–83 (2019). https://doi.org/10.1177/0142064X19855580
Cloppet, F., Eglin, V., Helias-Baron, M., Kieu, C., Vincent, N., Stutzmann, D.: ICDAR2017 competition on the classification of medieval handwritings in latin script. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 1371–1376 (2017). https://doi.org/10.1109/ICDAR.2017.224
Depauw, M., Gheldof, T.: Trismegistos: an interdisciplinary platform for ancient world texts and related information. In: Bolikowski, Ł, Casarosa, V., Goodale, P., Houssos, N., Manghi, P., Schirrwagen, J. (eds.) TPDL 2013. CCIS, vol. 416, pp. 40–52. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08425-1_5
Dhali, M.A., Jansen, C.N., de Wit, J.W., Schomaker, L.: Feature-extraction methods for historical manuscript dating based on writing style development. Pattern Recogn. Lett. 131, 413–420 (2020)
Hamid, A., Bibi, M., Moetesum, M., Siddiqi, I.: Deep learning based approach for historical manuscript dating. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 967–972. IEEE (2019)
Harrauer, H.: Handbuch der griechischen Paläographie. A. Hiersemann, Stuttgart (2010)
Li, Y., Genzel, D., Fujii, Y., Popat, A.C.: Publication date estimation for printed historical documents using convolutional neural networks. In: Proceedings of the 3rd International Workshop on Historical Document Imaging and Processing, pp. 99–106 (2015)
Monnier, T., Aubry, M.: docextractor: an off-the-shelf historical document element extraction. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 91–96 (2020). https://doi.org/10.1109/ICFHR2020.2020.00027
Nongbri, B.: Palaeographic analysis of codices from the early Christian period: a point of method. J. Study New Testament 42(1), 84–97 (2019). https://doi.org/10.1177/0142064X19855582
Orsini, P., Clarysse, W.: Early new testament manuscripts and their dates: a critique of theological palaeography. Ephemer. Theol. Lovan. 88, 443–474 (2012). https://doi.org/10.2143/ETL.88.4.2957937
Paparrigopoulou, A., Kougia, V., Konstantinidou, M., Pavlopoulos, J.: Greek literary papyri dating benchmark. In: Coustaty, M., Fornés, A. (eds.) ICDAR 2023. LNCS, vol. 14193, pp. 296–306. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-41498-5_21
Paulissen, J., Vandorpe, K.: Dating early Ptolemaic salt tax receipts: the Egyptian tax year. Zeitschrift für Papyrologie und Epigraphik 211, 145–161 (2019). https://www.jstor.org/stable/48632501
Pavlopoulos, J., Konstantinidou, M., Marthot-Santaniello, I., Essler, H., Paparigopoulou, A.: Dating Greek papyri with text regression. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 10001–10013. Association for Computational Linguistics, Toronto, Canada (2023). https://doi.org/10.18653/v1/2023.acl-long.556, https://aclanthology.org/2023.acl-long.556
Pavlopoulos, J., et al.: Explaining the chronological attribution of Greek papyri images. In: Bifet, A., Lorena, A.C., Ribeiro, R.P., Gama, J., Abreu, P.H. (eds.) DS 2023. LNCS, vol. 14276, pp. 401–415. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45275-8_27
Seuret, M., et al.: ICDAR 2021 competition on historical document classification. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 618–634. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1_41
Vandorpe, K.: The bilingual family archive of Dryton, his wife Apollonia and their daughter Senmouthis (P.Dryton). Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten, Brussels (2002)
Wahlberg, F., Wilkinson, T., Brun, A.: Historical manuscript production date estimation using deep convolutional neural networks. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 205–210 (2016). https://doi.org/10.1109/ICFHR.2016.0048
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
De Gregorio, G., Ferretti, L., Pena, R.C.G., Marthot-Santaniello, I., Konstantinidou, M., Pavlopoulos, J. (2024). A New Framework for Error Analysis in Computational Paleographic Dating of Greek Papyri. In: Mouchère, H., Zhu, A. (eds) Document Analysis and Recognition – ICDAR 2024 Workshops. ICDAR 2024. Lecture Notes in Computer Science, vol 14936. Springer, Cham. https://doi.org/10.1007/978-3-031-70642-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-70642-4_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70641-7
Online ISBN: 978-3-031-70642-4
eBook Packages: Computer ScienceComputer Science (R0)