Quickstart fastaiΒΆ
In this federated learning tutorial we will learn how to train a SqueezeNet model on MNIST using Flower and fastai. It is recommended to create a virtual environment and run everything within a virtualenv.
Then, clone the code example directly from GitHub:
git clone --depth=1 https://github.com/adap/flower.git _tmp \
&& mv _tmp/examples/quickstart-fastai . \
&& rm -rf _tmp && cd quickstart-fastai
This will create a new directory called quickstart-fastai containing the following files:
quickstart-fastai
βββ fastai_example
β βββ client_app.py # Defines your ClientApp
β βββ server_app.py # Defines your ServerApp
β βββ task.py # Defines your model, training and data loading
βββ pyproject.toml # Project metadata like dependencies and configs
βββ README.md
Next, activate your environment, then run:
# Navigate to the example directory
$ cd path/to/quickstart-fastai
# Install project and dependencies
$ pip install -e .
This example by default runs the Flower Simulation Engine, creating a federation of 10 nodes using FedAvg as the aggregation strategy. The dataset will be partitioned using Flower Datasetβs IidPartitioner. Letβs run the project:
# Run with default arguments
$ flwr run .
With default arguments you will see an output like this one:
Loading project configuration...
Success
INFO : Starting FedAvg strategy:
INFO : βββ Number of rounds: 3
INFO : βββ ArrayRecord (4.72 MB)
INFO : βββ ConfigRecord (train): (empty!)
INFO : βββ ConfigRecord (evaluate): (empty!)
INFO : βββ> Sampling:
INFO : β βββFraction: train (0.50) | evaluate ( 1.00)
INFO : β βββMinimum nodes: train (2) | evaluate (2)
INFO : β βββMinimum available nodes: 2
INFO : βββ> Keys in records:
INFO : βββ Weighted by: 'num-examples'
INFO : βββ ArrayRecord key: 'arrays'
INFO : βββ ConfigRecord key: 'config'
INFO :
INFO :
INFO : [ROUND 1/3]
INFO : configure_train: Sampled 5 nodes (out of 10)
INFO : aggregate_train: Received 5 results and 0 failures
INFO : βββ> Aggregated MetricRecord: {}
INFO : configure_evaluate: Sampled 10 nodes (out of 10)
INFO : aggregate_evaluate: Received 10 results and 0 failures
INFO : βββ> Aggregated MetricRecord: {'eval_loss': 3.1197, 'eval_acc': 0.14874}
INFO :
INFO : [ROUND 2/3]
INFO : configure_train: Sampled 5 nodes (out of 10)
INFO : aggregate_train: Received 5 results and 0 failures
INFO : βββ> Aggregated MetricRecord: {}
INFO : configure_evaluate: Sampled 10 nodes (out of 10)
INFO : aggregate_evaluate: Received 10 results and 0 failures
INFO : βββ> Aggregated MetricRecord: {'eval_loss': 0.8071, 'eval_acc': 0.7488}
INFO :
INFO : [ROUND 3/3]
INFO : configure_train: Sampled 5 nodes (out of 10)
INFO : aggregate_train: Received 5 results and 0 failures
INFO : βββ> Aggregated MetricRecord: {}
INFO : configure_evaluate: Sampled 10 nodes (out of 10)
INFO : aggregate_evaluate: Received 10 results and 0 failures
INFO : βββ> Aggregated MetricRecord: {'eval_loss': 0.5015, 'eval_acc': 0.8547}
INFO :
INFO : Strategy execution finished in 72.84s
INFO :
INFO : Final results:
INFO :
INFO : Global Arrays:
INFO : ArrayRecord (4.719 MB)
INFO :
INFO : Aggregated ClientApp-side Train Metrics:
INFO : {1: {}, 2: {}, 3: {}}
INFO :
INFO : Aggregated ClientApp-side Evaluate Metrics:
INFO : { 1: {'eval_acc': '1.4875e-01', 'eval_loss': '3.1197e+00'},
INFO : 2: {'eval_acc': '7.4883e-01', 'eval_loss': '8.0705e-01'},
INFO : 3: {'eval_acc': '8.5467e-01', 'eval_loss': '5.0145e-01'}}
INFO :
INFO : ServerApp-side Evaluate Metrics:
INFO : {}
INFO :
Saving final model to disk...
You can also override the parameters defined in the [tool.flwr.app.config]
section
in pyproject.toml
like this:
# Override some arguments
$ flwr run . --run-config num-server-rounds=5
Note
Check the source code of this
tutorial in examples/quickstart-fastai
in the Flower GitHub repository.