Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Step by step: cells with multiple functions in cortical circuit assembly

Abstract

It is often thought that the construction of cortical circuits occurs as the result of an elegantly designed process that unfolds sequentially as an animal develops until adult functional networks emerge. In reality, cortical circuits are shaped by evolutionary mechanisms, changes in developmental programmes driven by neuronal activity or epigenetic mechanisms and the need to adapt to the external world, and must pass through several important phases and timely checkpoints as they form. Some cortical cell types serve multiple functions during this developmental journey and are then reused (or ‘recycled’) to perform different functions in the adult cortex. Understanding the different stages of the cortical construction process and taking into account the ways in which cellular functions change across time and space is therefore essential if we are to build a comprehensive framework of cortical wiring in both health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classical developmental sequences in the cortex.
Fig. 2: Cells with transient functions in the cortex.
Fig. 3: Major transitions and checkpoints in cortical circuit development.

Similar content being viewed by others

References

  1. Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bella, D. J. D. et al. Molecular logic of cellular diversification in the mouse cerebral cortex. Nature 595, 554–559 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moreau, M. X., Saillour, Y., Cwetsch, A. W., Pierani, A. & Causeret, F. Single-cell transcriptomics of the early developing mouse cerebral cortex disentangles the spatial and temporal components of neuronal fate acquisition. Development 148, dev197962 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Briscoe, J. & Marín, O. Looking at neurodevelopment through a big data lens. Science 369, eaaz8627 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Molnár, Z., Luhmann, H. J. & Kanold, P. O. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science 370, eabb2153 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Workman, A. D., Charvet, C. J., Clancy, B., Darlington, R. B. & Finlay, B. L. Modeling transformations of neurodevelopmental sequences across mammalian species. J. Neurosci. 33, 7368–7383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wallois, F. et al. Back to basics: the neuronal substrates and mechanisms that underlie the electroencephalogram in premature neonates. Neurophysiol. Clin. 51, 5–33 (2020).

    Article  PubMed  Google Scholar 

  9. Hoerder-Suabedissen, A. & Molnár, Z. Development, evolution and pathology of neocortical subplate neurons. Nat. Rev. Neurosci. 16, 133–146 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Causeret, F., Moreau, M. X., Pierani, A. & Blanquie, O. The multiple facets of Cajal-Retzius neurons. Development 148, dev199409 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Kirischuk, S., Luhmann, H. J. & Kilb, W. Cajal–Retzius cells: update on structural and functional properties of these mystic neurons that bridged the 20th century. Neuroscience 275, 33–46 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Sierra, A., Paolicelli, R. C. & Kettenmann, H. Cien años de microglía: milestones in a century of microglial research. Trends Neurosci. 42, 778–792 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Liddelow, S. A., Marsh, S. E. & Stevens, B. Microglia and astrocytes in disease: dynamic duo or partners in crime? Trends Immunol. 41, 820–835 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Prinz, M., Masuda, T., Wheeler, M. A. & Quintana, F. J. Microglia and central nervous system–associated macrophages — from origin to disease modulation. Annu. Rev. Immunol. 39, 1–27 (2021).

    Article  CAS  Google Scholar 

  15. Kitazawa, A. et al. Hippocampal pyramidal neurons switch from a multipolar migration mode to a novel “climbing” migration mode during development. J. Neurosci. 34, 1115–1126 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tricoire, L. et al. A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity. J. Neurosci. 31, 10948–10970 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hayashi, K., Kubo, K., Kitazawa, A. & Nakajima, K. Cellular dynamics of neuronal migration in the hippocampus. Front. Neurosci. 9, 135 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lim, L., Mi, D., Llorca, A. & Marín, O. Development and functional diversification of cortical interneurons. Neuron 100, 294–313 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lim, L. et al. Optimization of interneuron function by direct coupling of cell migration and axonal targeting. Nat. Neurosci. 21, 920–931 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allene, C. et al. Dynamic changes in interneuron morphophysiological properties mark the maturation of hippocampal network activity. J. Neurosci. 32, 6688–6698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Allene, C. et al. Sequential generation of two distinct synapse-driven network patterns in developing neocortex. J. Neurosci. 28, 12851–12863 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crépel, V. et al. A parturition-associated nonsynaptic coherent activity pattern in the developing. Hippocampus. Neuron 54, 105–120 (2007).

    PubMed  Google Scholar 

  23. Blankenship, A. G. & Feller, M. B. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat. Rev. Neurosci. 11, 18–29 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Egorov, A. V. & Draguhn, A. Development of coherent neuronal activity patterns in mammalian cortical networks: common principles and local hetereogeneity. Mech. Dev. 130, 412–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Ben-Ari, Y. Is birth a critical period in the pathogenesis of autism spectrum disorders? Nat. Rev. Neurosci. 16, 498–505 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Martini, F. J., Guillamón-Vivancos, T., Moreno-Juan, V., Valdeolmillos, M. & López-Bendito, G. Spontaneous activity in developing thalamic and cortical sensory networks. Neuron 109, 2519–2534 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bortone, D. & Polleux, F. KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron 62, 53–71 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Manent, J. B., Jorquera, I., Ben-Ari, Y., Aniksztejn, L. & Represa, A. Glutamate acting on AMPA but not NMDA receptors modulates the migration of hippocampal interneurons. J. Neurosci. 26, 5901–5909 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wong, F. K. et al. Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature 557, 668–673 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Silva, C. G., Peyre, E. & Nguyen, L. Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis. Nat. Rev. Neurosci. 20, 318–329 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Owens, D. F. & Kriegstein, A. R. Is there more to gaba than synaptic inhibition? Nat. Rev. Neurosci. 3, 715–727 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. LoTurco, J. J., Owens, D. F., Heath, M. J. S., Davis, M. B. E. & Kriegstein, A. R. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Silva, C. G. et al. Cell-intrinsic control of interneuron migration drives cortical morphogenesis. Cell 172, 1063–1067.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. López-Bendito, G. et al. Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125, 127–142 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Duan, Z. R. S. et al. GABAergic restriction of network dynamics regulates interneuron survival in the developing cortex. Neuron 105, 75–92.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Oh, W. C., Lutzu, S., Castillo, P. E. & Kwon, H.-B. De novo synaptogenesis induced by GABA in the developing mouse cortex. Science 353, 1037–1040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, D. D. & Kriegstein, A. R. GABA regulates excitatory synapse formation in the neocortex via NMDA receptor activation. J. Neurosci. 28, 5547–5558 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bonifazi, P. et al. GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326, 1419–1424 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Takesian, A. E., Bogart, L. J., Lichtman, J. W. & Hensch, T. K. Inhibitory circuit gating of auditory critical-period plasticity. Nat. Neurosci. 21, 1–17 (2018).

    Google Scholar 

  40. Reh, R. K. et al. Critical period regulation across multiple timescales. Proc. Natl Acad. Sci. USA 117, 23242–23251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bajaj, S. et al. Neurotransmitter signaling regulates distinct phases of multimodal human interneuron migration. EMBO J. 40, e108714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Manent, J.-B. & Represa, A. Neurotransmitters and brain maturation: early paracrine actions of GABA and glutamate modulate neuronal migration. Neurosci 13, 268–279 (2007).

    CAS  Google Scholar 

  43. Luhmann, H. J., Fukuda, A. & Kilb, W. Control of cortical neuronal migration by glutamate and GABA. Front. Cell Neurosci. 9, 4 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Dupont, E., Hanganu, I. L., Kilb, W., Hirsch, S. & Luhmann, H. J. Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature 439, 79–83 (2005).

    Article  PubMed  CAS  Google Scholar 

  45. Yuste, R., Nelson, D. A., Rubin, W. W. & Katz, L. C. Neuronal domains in developing neocortex: mechanisms of coactivation. Neuron 14, 7–17 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Elias, L. A. B. & Kriegstein, A. R. Gap junctions: multifaceted regulators of embryonic cortical development. Trends Neurosci. 31, 243–250 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu, Y.-C. et al. Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly. Nature 486, 113–117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Demarque, M. et al. Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron 36, 1051–1061 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Araki, T., Kiyama, H. & Tohyama, M. GABAA receptor subunit messenger RNAs show differential expression during cortical development in the rat brain. Neuroscience 51, 583–591 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Hadzic, M., Jack, A. & Wahle, P. Ionotropic glutamate receptors: which ones, when, and where in the mammalian neocortex. J. Comp. Neurol. 525, 976–1033 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Ben-Ari, Y. Excitatory actions of gaba during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Tyzio, R. et al. Depolarizing actions of GABA in immature neurons depend neither on ketone bodies nor on pyruvate. J. Neurosci. 31, 34–45 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khalilov, I., Minlebaev, M., Mukhtarov, M. & Khazipov, R. Dynamic changes from depolarizing to hyperpolarizing GABAergic actions during giant depolarizing potentials in the neonatal rat hippocampus. J. Neurosci. 35, 12635–12642 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Minlebaev, M., Ben-Ari, Y. & Khazipov, R. Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo. J. Neurophysiol. 97, 692–700 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Tyzio, R., Holmes, G. L., Ben-Ari, Y. & Khazipov, R. Timing of the developmental switch in GABA(A) mediated signaling from excitation to inhibition in CA3 rat hippocampus using gramicidin perforated patch and extracellular recordings. Epilepsia 48 (Suppl 5), 96–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Graf, J. et al. A limited role of NKCC1 in telencephalic glutamatergic neurons for developing hippocampal network dynamics and behavior. Proc. Natl Acad. Sci. USA 118, e2014784118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kirmse, K. et al. GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo. Nat. Commun. 6, 7750 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Murata, Y. & Colonnese, M. T. GABAergic interneurons excite neonatal hippocampus in vivo. Sci. Adv. 6, eaba1430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, J. & Kriegstein, A. R. A GABAergic projection from the zona incerta to cortex promotes cortical neuron development. Science 350, 554–558 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dammerman, R. S., Flint, A. C., Noctor, S. & Kriegstein, A. R. An excitatory GABAergic plexus in developing neocortical layer 1. J. Neurophysiol. 84, 428–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71–75 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Kerchner, G. A. & Nicoll, R. A. Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat. Rev. Neurosci. 9, 813–825 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Crair, M. C. & Malenka, R. C. A critical period for long-term potentiation at thalamocortical synapses. Nature 375, 325–328 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Bellone, C. & Nicoll, R. A. Rapid bidirectional switching of synaptic NMDA receptors. Neuron 55, 779–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Matta, J. A., Ashby, M. C., Sanz-Clemente, A., Roche, K. W. & Isaac, J. T. R. mGluR5 and NMDA receptors drive the experience- and activity-dependent NMDA receptor NR2B to NR2A subunit switch. Neuron 70, 339–351 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B. & Seeburg, P. H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–40 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Garcia, N. V. D. M., Priya, R., Tuncdemir, S. N., Karayannis, T. & Fishell, G. Sensory inputs control the integration of neurogliaform interneurons into cortical circuits. Nat. Neurosci. 18, 393–401 (2015).

    Article  CAS  Google Scholar 

  68. Lauri, S. E., Ryazantseva, M., Orav, E., Vesikansa, A. & Taira, T. Kainate receptors in the developing neuronal networks. Neuropharmacology https://doi.org/10.1016/j.neuropharm.2021.108585 (2021).

    Article  PubMed  Google Scholar 

  69. Kumar, S. S., Bacci, A., Kharazia, V. & Huguenard, J. R. A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons. J. Neurosci. 8, 3005–3015 (2002).

    Article  Google Scholar 

  70. Brill, J. & Huguenard, J. R. Sequential changes in AMPA receptor targeting in the developing neocortical excitatory circuit. J. Neurosci. 28, 13918–13928 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shin, J., Shen, F. & Huguenard, J. R. Polyamines modulate AMPA receptor–dependent synaptic responses in immature layer V pyramidal neurons. J. Neurophysiol. 93, 2634–2643 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Jabaudon, D. Fate and freedom in developing neocortical circuits. Nat. Commun. 8, 16042 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Garel, S. & López-Bendito, G. Inputs from the thalamocortical system on axon pathfinding mechanisms. Curr. Opin. Neurobiol. 27, 143–150 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Antón-Bolaños, N., Espinosa, A. & López-Bendito, G. Developmental interactions between thalamus and cortex: a true love reciprocal story. Curr. Opin. Neurobiol. 52, 33–41 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Bielle, F. et al. Slit2 activity in the migration of guidepost neurons shapes thalamic projections during development and evolution. Neuron 69, 1085–1098 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Bielle, F. et al. Emergent growth cone responses to combinations of Slit1 and netrin 1 in thalamocortical axon topography. Curr. Biol. 21, 1748–1755 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Tinterri, A. et al. Tangential migration of corridor guidepost neurons contributes to anxiety circuits. J. Comp. Neurol. 526, 397–411 (2018).

    Article  PubMed  Google Scholar 

  78. Chen, Y., Magnani, D., Theil, T., Pratt, T. & Price, D. J. Evidence that descending cortical axons are essential for thalamocortical axons to cross the pallial-subpallial boundary in the embryonic forebrain. PLoS ONE 7, e33105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Deck, M. et al. Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections. Neuron 77, 472–484 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Molnár, Z., Adams, R., Goffinet, A. M. & Blakemore, C. The role of the first postmitotic cortical cells in the development of thalamocortical innervation in the reelermouse. J. Neurosci. 18, 5746–5765 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Luhmann, H. J. & Khazipov, R. Neuronal activity patterns in the developing barrel cortex. Neuroscience 368, 256–267 (2017).

    Article  PubMed  CAS  Google Scholar 

  82. Dehay, C., Savatier, P., Cortay, V. & Kennedy, H. Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. J. Neurosci. 21, 201–214 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Borello, U., Kennedy, H. & Dehay, C. The logistics of afferent cortical specification in mice and men. Semin. Cell Dev. Biol. 76, 112–119 (2018).

    Article  PubMed  Google Scholar 

  84. Reillo, I. et al. A complex code of extrinsic influences on cortical progenitor cells of higher mammals. Cereb. Cortex 27, 4586–4606 (2017).

    Article  PubMed  Google Scholar 

  85. Vitali, I. et al. Progenitor hyperpolarization regulates the sequential generation of neuronal subtypes in the developing neocortex. Cell 174, 1264–1276.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Abe, P. et al. Intermediate progenitors facilitate intracortical progression of thalamocortical axons and interneurons through CXCL12 chemokine signaling. J. Neurosci. 35, 13053–13063 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shimogori, T. & Grove, E. A. Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation. J. Neurosci. 25, 6550–6560 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lokmane, L. et al. Sensory map transfer to the neocortex relies on pretarget ordering of thalamic axons. Curr. Biol. 23, 810–816 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Ackman, J. B., Burbridge, T. J. & Crair, M. C. Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490, 219–225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Antón-Bolaños, N. et al. Prenatal activity from thalamic neurons governs the emergence of functional cortical maps in mice. Science 364, 987–990 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Callaway, E. M. & Borrell, V. Developmental sculpting of dendritic morphology of layer 4 neurons in visual cortex: influence of retinal input. J. Neurosci. 31, 7456–7470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, H. et al. Laminar and columnar development of barrel cortex relies on thalamocortical neurotransmission. Neuron 79, 970–986 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Matsui, A. et al. BTBD3 controls dendrite orientation toward active axons in mammalian neocortex. Science 342, 1114–1118 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Ibrahim, L. A. et al. Bottom-up inputs are required for establishment of top-down connectivity onto cortical layer 1 neurogliaform cells. Neuron 109, 3473–3485 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Engelhardt, J., von, Khrulev, S., Eliava, M., Wahlster, S. & Monyer, H. 5-HT3A receptor-bearing white matter interstitial GABAergic interneurons are functionally integrated into cortical and subcortical networks. J. Neurosci. 31, 16844–16854 (2011).

    Article  CAS  Google Scholar 

  96. Chun, J. J. M. & Shatz, C. J. Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population. J. Comp. Neurol. 282, 555–569 (1989).

    Article  CAS  PubMed  Google Scholar 

  97. Tomioka, R. & Rockland, K. S. Long-distance corticocortical GABAergic neurons in the adult monkey white and gray matter. J. Comp. Neurol. 505, 526–538 (2007).

    Article  PubMed  Google Scholar 

  98. Sedmak, G. & Judaš, M. White matter interstitial neurons in the adult human brain: 3% of cortical neurons in quest for recognition. Cells 10, 190 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gesuita, L. & Karayannis, T. A ‘marginal’ tale: the development of the neocortical layer 1. Curr. Opin. Neurobiol. 66, 37–47 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Genescu, I. & Garel, S. Being superficial: a developmental viewpoint on cortical layer 1 wiring. Curr. Opin. Neurobiol. 66, 125–134 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Bartolini, G., Ciceri, G. & Marín, O. Integration of GABAergic interneurons into cortical cell assemblies: lessons from embryos and adults. Neuron 79, 849–864 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Bartolini, G. et al. Neuregulin 3 mediates cortical plate invasion and laminar allocation of GABAergic interneurons. Cell Rep. 18, 1157–1170 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zechel, S., Nakagawa, Y. & Ibáñez, C. F. Thalamo-cortical axons regulate the radial dispersion of neocortical GABAergic interneurons. Elife 5, e20770 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. García, N. V. D. M., Karayannis, T. & Fishell, G. Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature 472, 351–355 (2011).

    Article  CAS  Google Scholar 

  105. Ghezzi, F. et al. Non-canonical role for Lpar1-EGFP subplate neurons in early postnatal mouse somatosensory cortex. Elife 10, e60810 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tuncdemir, S. N. et al. Early somatostatin interneuron connectivity mediates the maturation of deep layer cortical circuits. Neuron 89, 521–535 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Anastasiades, P. G. et al. GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nat. Commun. 7, 10584 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Marques-Smith, A. et al. A transient translaminar GABAergic interneuron circuit connects thalamocortical recipient layers in neonatal somatosensory cortex. Neuron 89, 536–549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Río, J. A. D. et al. A role for Cajal–Retzius cells and reelin in the development of hippocampal connections. Nature 385, 70–74 (1997).

    Article  PubMed  Google Scholar 

  110. Ogawa, M. et al. The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14, 899–912 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Sato, Y., Hirata, T., Ogawa, M. & Fujisawa, H. Requirement for early-generated neurons recognized by monoclonal antibody Lot1 in the formation of lateral olfactory tract. J. Neurosci. 18, 7800–7810 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tomioka, N. et al. Neocortical origin and tangential migration of guidepost neurons in the lateral olfactory tract. J. Neurosci. 20, 5802–5812 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dixit, R. et al. Neurog1 and Neurog2 control two waves of neuronal differentiation in the piriform cortex. J. Neurosci. 34, 539–553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Squarzoni, P., Thion, M. S. & Garel, S. Neuronal and microglial regulators of cortical wiring: usual and novel guideposts. Front. Neurosci. 9, 248 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. de Frutos, C. A. et al. Reallocation of olfactory Cajal-Retzius cells shapes neocortex architecture. Neuron 92, 435–448 (2016).

    Article  PubMed  CAS  Google Scholar 

  116. Riva, M. et al. Activity-dependent death of transient Cajal-Retzius neurons is required for functional cortical wiring. Elife 8, e50503 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Save, L., Baude, A. & Cossart, R. Temporal embryonic origin critically determines cellular physiology in the dentate gyrus. Cereb. Cortex 32, 6688 (2018).

    Google Scholar 

  118. Cavalieri, D. et al. CA1 pyramidal cell diversity is rooted in the time of neurogenesis. eLife 10, e69270 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Caviness, V. S. Time of neuron origin in the hippocampus and dentate gyrus of normal and reeler mutant mice: an autoradiographic analysis. J. Comp. Neurol. 151, 113–120 (1973).

    Article  PubMed  Google Scholar 

  120. Marissal, T. et al. Pioneer glutamatergic cells develop into a morpho-functionally distinct population in the juvenile CA3 hippocampus. Nat. Commun. 3, 1316–12 (2012).

    Article  PubMed  CAS  Google Scholar 

  121. Anstötz, M., Lee, S. K., Neblett, T. I., Rune, G. M. & Maccaferri, G. Experience-dependent regulation of Cajal-Retzius cell networks in the developing and adult mouse hippocampus. Cereb. Cortex 28, 672–687 (2017).

    Article  PubMed Central  Google Scholar 

  122. Supèr, H., Martínez, A., Río, J. A. D. & Soriano, E. Involvement of distinct pioneer neurons in the formation of layer-specific connections in the hippocampus. J. Neurosci. 18, 4616–4626 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Meyer, G. & González-Gómez, M. The heterogeneity of human Cajal-Retzius neurons. Semin. Cell Dev. Biol. 76, 101–111 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Anstötz, M. et al. Developmental profile, morphology, and synaptic connectivity of Cajal–Retzius cells in the postnatal mouse hippocampus. Cereb. Cortex 26, 855–872 (2016).

    PubMed  Google Scholar 

  125. Fogarty, M. et al. Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J. Neurosci. 27, 10935–10946 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sousa, V. H., Miyoshi, G., Hjerling-Leffler, J., Karayannis, T. & Fishell, G. Characterization of Nkx6-2-derived neocortical interneuron lineages. Cereb. Cortex 19, i1–i10 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Dard, R. F. et al. The rapid developmental rise of somatic inhibition disengages hippocampal dynamics from self-motion. bioRxiv https://doi.org/10.1101/2021.06.08.447542 (2021).

    Article  Google Scholar 

  128. Su, J. et al. Paracrine role for somatostatin interneurons in the assembly of perisomatic inhibitory synapses. J. Neurosci. 40, 7421–7435 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bocchio, M. et al. Hippocampal hub neurons maintain distinct connectivity throughout their lifetime. Nat. Commun. 11, 4559 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Villette, V. et al. Development of early-born γ-aminobutyric acid hub neurons in mouse hippocampus from embryogenesis to adulthood. J. Comp. Neurol. 524, 2440–2461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Picardo, M. A., Guigue, P., Allene, C. & Fishell, G. Pioneer GABA cells comprise a subpopulation of hub neurons in the developing hippocampus. Neuron 71, 695–709 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wester, J. C. & McBain, C. J. Interneurons differentially contribute to spontaneous network activity in the developing hippocampus dependent on their embryonic lineage. J. Neurosci. 36, 2646–2662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mòdol, L. et al. Spatial embryonic origin delineates GABAergic hub neurons driving network dynamics in the developing entorhinal cortex. Cereb. Cortex 27, 4649–4661 (2017).

    Article  PubMed  Google Scholar 

  134. Wang, C.-Z. et al. Early-generated interneurons regulate neuronal circuit formation during early postnatal development. eLife 8, 333 (2019).

    Article  Google Scholar 

  135. Jeong, H. Y. & Gutkin, B. Synchrony of neuronal oscillations controlled by GABAergic reversal potentials. Neural Comput. 19, 706–729 (2007).

    Article  PubMed  Google Scholar 

  136. Blanquie, O. et al. Electrical activity controls area-specific expression of neuronal apoptosis in the mouse developing cerebral cortex. eLife 6, 2551 (2017).

    Article  Google Scholar 

  137. Barron, H. C., Auksztulewicz, R. & Friston, K. Prediction and memory: a predictive coding account. Prog. Neurobiol. 192, 101821 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Chittajallu, R. & Isaac, J. T. R. Emergence of cortical inhibition by coordinated sensory-driven plasticity at distinct synaptic loci. Nat. Neurosci. 13, 1240–1248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Doischer, D. et al. Postnatal differentiation of basket cells from slow to fast signaling devices. J. Neurosci. 28, 12956–12968 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pelkey, K. A. et al. Hippocampal GABAergic inhibitory interneurons. Physiol. Rev. 97, 1619–1747 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mierau, S. B., Patrizi, A., Hensch, T. K. & Fagiolini, M. Cell-specific regulation of N-methyl-D-aspartate receptor maturation by Mecp2 in cortical circuits. Biol. Psychiatr. 79, 746–754 (2016).

    Article  CAS  Google Scholar 

  142. Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (2004).

    Article  Google Scholar 

  143. Hu, J. S., Vogt, D., Sandberg, M. & Rubenstein, J. L. Cortical interneuron development: a tale of time and space. Development 144, 3867–3878 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Taniguchi, H., Lu, J. & Huang, Z. J. The spatial and temporal origin of chandelier cells in mouse neocortex. Science 339, 70–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Inan, M., Welagen, J. & Anderson, S. A. Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. Cereb. Cortex 22, 820–827 (2012).

    Article  PubMed  Google Scholar 

  146. Donato, F., Jacobsen, R. I., Moser, M.-B. & Moser, E. I. Stellate cells drive maturation of the entorhinal-hippocampal circuit. Science 355, eaai8178 (2017).

    Article  PubMed  CAS  Google Scholar 

  147. Rio, J., del, Lecea, L., de, Ferrer, I. & Soriano, E. The development of parvalbumin-immunoreactivity in the neocortex of the mouse. Dev. Brain Res. 81, 247–259 (1994).

    Article  Google Scholar 

  148. Huang, Z. J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Erzurumlu, R. S. & Gaspar, P. Development and critical period plasticity of the barrel cortex. Eur. J. Neurosci. 35, 1540–1553 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Daw, M. I., Ashby, M. C. & Isaac, J. T. R. Coordinated developmental recruitment of latent fast spiking interneurons in layer IV barrel cortex. Nat. Neurosci. 10, 453–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Erzurumlu, R. S. & Gaspar, P. How the barrel cortex became a working model for developmental plasticity: a historical perspective. J. Neurosci. 40, 6460–6473 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang, B.-S. et al. Retinal and callosal activity-dependent chandelier cell elimination shapes binocularity in primary visual cortex. Neuron 109, 502–515.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Pan-Vazquez, A., Wefelmeyer, W., Sabater, V. G., Neves, G. & Burrone, J. Activity-dependent plasticity of axo-axonic synapses at the axon initial segment. Neuron 106, 265–276.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rinetti-Vargas, G., Phamluong, K., Ron, D. & Bender, K. J. Periadolescent maturation of GABAergic hyperpolarization at the axon initial segment. Cell Rep. 20, 21–29 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chattopadhyaya, B. et al. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54, 889–903 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cruz, D. A., Eggan, S. M. & Lewis, D. A. Postnatal development of pre- and postsynaptic GABA markers at chandelier cell connections with pyramidal neurons in monkey prefrontal cortex. J. Comp. Neurol. 465, 385–400 (2003).

    Article  PubMed  Google Scholar 

  157. Domínguez, S. et al. Maturation of PNN and ErbB4 signaling in area CA2 during adolescence underlies the emergence of PV interneuron plasticity and social memory. Cell Rep. 29, 1099–1112.e4 (2019).

    Article  PubMed  CAS  Google Scholar 

  158. Katagiri, H., Fagiolini, M. & Hensch, T. K. Optimization of somatic inhibition at critical period onset in mouse visual cortex. Neuron 53, 805–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Micheva, K. D. & Beaulieu, C. Postnatal development of GABA neurons in the rat somatosensory barrel cortex: a quantitative study. Eur. J. Neurosci. 7, 419–430 (1995).

    Article  CAS  PubMed  Google Scholar 

  160. Micheva, K. D. & Beaulieu, C. Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J. Comp. Neurol. 373, 340–354 (1996).

    Article  CAS  PubMed  Google Scholar 

  161. McGee, A. W., Yang, Y., Fischer, Q. S., Daw, N. W. & Strittmatter, S. M. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309, 2222–2226 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Syken, J., GrandPre, T., Kanold, P. O. & Shatz, C. J. PirB restricts ocular-dominance plasticity in visual cortex. Science 313, 1795–1800 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Ribic, A., Crair, M. C. & Biederer, T. Synapse-selective control of cortical maturation and plasticity by parvalbumin-autonomous action of SynCAM 1. Cell Rep. 26, 381–393.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Spiegel, I. Experience-regulated molecular mechanisms in cortical GABAergic interneurons: from cellular functions to control over circuit plasticity. Curr. Opin. Neurobiol. 67, 145–154 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Kobayashi, Y., Ye, Z. & Hensch, T. K. Clock genes control cortical critical period timing. Neuron 86, 264–275 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ribot, J. et al. Astrocytes close the mouse critical period for visual plasticity. Science 373, 77–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Barth, A. L. & Poulet, J. F. A. Experimental evidence for sparse firing in the neocortex. Trends Neurosci. 35, 345–355 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Mòdol, L. et al. Assemblies of perisomatic GABAergic neurons in the developing barrel cortex. Neuron 105, 93–105 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Wolfe, J., Houweling, A. R. & Brecht, M. Sparse and powerful cortical spikes. Curr. Opin. Neurobiol. 20, 306–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Golshani, P. et al. Internally mediated developmental desynchronization of neocortical network activity. J. Neurosci. 29, 10890–10899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Minlebaev, M., Colonnese, M., Tsintsadze, T., Sirota, A. & Khazipov, R. Early gamma oscillations synchronize developing thalamus and cortex. Science 334, 226–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Kuhlman, S. J., Lu, J., Lazarus, M. S. & Huang, Z. J. Maturation of GABAergic inhibition promotes strengthening of temporally coherent inputs among convergent pathways. PLoS Comput. Biol. 6, e1000797 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Kuhlman, S. J. et al. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. Nature 501, 543–546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Galuske, R. A. W., Munk, M. H. J. & Singer, W. Relation between gamma oscillations and neuronal plasticity in the visual cortex. Proc. Natl Acad. Sci. USA 116, 23317–23325 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Xu, H.-T. et al. Distinct lineage-dependent structural and functional organization of the hippocampus. Cell 157, 1552–1564 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ye, Z. et al. Instructing perisomatic inhibition by direct lineage reprogramming of neocortical projection neurons. Neuron 88, 475–483 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gour, A. et al. Postnatal connectomic development of inhibition in mouse barrel cortex. Science 371, eabb4534 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Bao, H. et al. Long-range GABAergic inputs regulate neural stem cell quiescence and control adult hippocampal neurogenesis. Cell Stem Cell 21, 604–617.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Vaden, R. J. et al. Parvalbumin interneurons provide spillover to newborn and mature dentate granule cells. Elife 9, e54125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. McCabe, A. K., Chisholm, S. L., Picken-Bahrey, H. L. & Moody, W. J. The self-regulating nature of spontaneous synchronized activity in developing mouse cortical neurones. J. Physiol. 577, 155–167 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kandler, K. & Katz, L. C. Neuronal coupling and uncoupling in the developing nervous system. Curr. Opin. Neurobiol. 5, 98–105 (1995).

    Article  CAS  PubMed  Google Scholar 

  184. Kandler, K. & Katz, L. C. Coordination of neuronal activity in developing visual cortex by gap junction-mediated biochemical communication. J. Neurosci. 18, 1419–1427 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Spoljaric, A. et al. Vasopressin excites interneurons to suppress hippocampal network activity across a broad span of brain maturity at birth. Proc. Natl Acad. Sci. USA 114, E10819–E10828 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tyzio, R. et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 343, 675–679 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Tyzio, R. et al. Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science 314, 1788–1792 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Jiang, M., Oliva, A. A., Lam, T. & Swann, J. W. GABAergic neurons that pioneer hippocampal area CA1 of the mouse: morphologic features and multiple fates. J. Comp. Neurol. 439, 176–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  189. Marty, S., Wehrlé, R., Alvarez-Leefmans, F. J., Gasnier, B. & Sotelo, C. Postnatal maturation of Na+, K+, 2Cl cotransporter expression and inhibitory synaptogenesis in the rat hippocampus: an immunocytochemical analysis. Eur. J. Neurosci. 15, 233–245 (2002).

    Article  PubMed  Google Scholar 

  190. Danglot, L., Triller, A. & Marty, S. The development of hippocampal interneurons in rodents. Hippocampus 16, 1032–1060 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Tyzio, R. et al. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J. Neurosci. 19, 10372–10382 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Arumugam, H., Liu, X., Colombo, P. J., Corriveau, R. A. & Belousov, A. B. NMDA receptors regulate developmental gap junction uncoupling via CREB signaling. Nat. Neurosci. 8, 1720–1726 (2005).

    Article  CAS  PubMed  Google Scholar 

  193. Yu, Y.-C., Bultje, R. S., Wang, X. & Shi, S.-H. Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature 458, 501–504 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and arealization of the cerebral cortex. Neuron 103, 980–1004 (2019).

    Article  CAS  PubMed  Google Scholar 

  195. Mizuno, H. et al. Patchwork-type spontaneous activity in neonatal barrel cortex layer 4 transmitted via thalamocortical projections. Cell Rep. 22, 123–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  196. Moreno-Juan, V. et al. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat. Commun. 8, 14172 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chou, S.-J. et al. Geniculocortical input drives genetic distinctions between primary and higher-order visual areas. Science 340, 1239–1242 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Vue, T. Y. et al. Thalamic control of neocortical area formation in mice. J. Neurosci. 33, 8442–8453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Pouchelon, G. et al. Modality-specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons. Nature 511, 471–474 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Salvador, A. F., Lima, K. Ade & Kipnis, J. Neuromodulation by the immune system: a focus on cytokines. Nat. Rev. Immunol. 21, 526–541 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Thion, M. S., Ginhoux, F. & Garel, S. Microglia and early brain development: an intimate journey. Science 362, 185–189 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Thion, M. S. et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172, 500–516.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hanganu, I. L., Ben-Ari, Y. & Khazipov, R. Retinal waves trigger spindle bursts in the neonatal rat visual cortex. J. Neurosci. 26, 6728–6736 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Tritsch, N. X., Yi, E., Gale, J. E., Glowatzki, E. & Bergles, D. E. The origin of spontaneous activity in the developing auditory system. Nature 450, 50–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Valeeva, G. et al. Emergence of coordinated activity in the developing entorhinal-hippocampal network. Cereb. Cortex 29, 906–920 (2019).

    Article  PubMed  Google Scholar 

  208. Möller, T. J. et al. Computational models of the “active self” and its disturbances in schizophrenia. Conscious. Cogn. 93, 103155 (2021).

    Article  PubMed  Google Scholar 

  209. Buzsáki, G., Peyrache, A. & Kubie, J. Emergence of cognition from action. Cold Spring Harb. Symp. Quant. Biol. 79, 41–50 (2014).

    Article  PubMed  Google Scholar 

  210. Keresztes, A., Ngo, C. T., Lindenberger, U., Werkle-Bergner, M. & Newcombe, N. S. Hippocampal maturation drives memory from generalization to specificity. Trends Cogn. Sci. 22, 676–686 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Colonnese, M. T. et al. A conserved switch in sensory processing prepares developing neocortex for vision. Neuron 67, 480–498 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Milh, M. et al. Rapid cortical oscillations and early motor activity in premature human neonate. Cereb. Cortex 17, 1582–1594 (2006).

    Article  PubMed  Google Scholar 

  213. Avitan, L. et al. Spontaneous and evoked activity patterns diverge over development. Elife 10, e61942 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Rochefort, N. L. et al. Sparsification of neuronal activity in the visual cortex at eye-opening. Proc. Natl Acad. Sci. Usa. 106, 15049–15054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Takada, N. et al. A developmental cell-type switch in cortical interneurons leads to a selective defect in cortical oscillations. Nat. Commun. 5, 5333 (2014).

    Article  CAS  PubMed  Google Scholar 

  216. Butt, S. J. B. et al. The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron 59, 722–732 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Huang, Z. J., Cristo, G. D. & Ango, F. Development of GABA innervation in the cerebral and cerebellar cortices. Nat. Rev. Neurosci. 8, 673–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  218. Dehorter, N. et al. Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science 349, 1216–1220 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Dehorter, N., Marichal, N., Marín, O. & Berninger, B. Tuning neural circuits by turning the interneuron knob. Curr. Opin. Neurobiol. 42, 144–151 (2017).

    Article  CAS  PubMed  Google Scholar 

  220. Kirischuk, S. et al. Modulation of neocortical development by early neuronal activity: physiology and pathophysiology. Front. Cell Neurosci. 11, 379 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Ashby, M. C. & Isaac, J. T. R. Maturation of a recurrent excitatory neocortical circuit by experience-dependent unsilencing of newly formed dendritic spines. Neuron 70, 510–521 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kidd, F. L. & Isaac, J. T. R. Developmental and activity- dependent regulation of kainate receptors at thalamocortical synapses. Nature 400, 569–573 (1999).

    Article  CAS  PubMed  Google Scholar 

  223. Gogolla, N., Takesian, A. E., Feng, G., Fagiolini, M. & Hensch, T. K. Sensory integration in mouse insular cortex reflects GABA circuit maturation. Neuron 83, 894–905 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Jurgensen, S. & Castillo, P. E. Selective dysregulation of hippocampal inhibition in the mouse lacking autism candidate gene CNTNAP2. J. Neurosci. 35, 14681–14687 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schizophrenia. Nat. Rev. Neurosci. 6, 312–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  226. Marín, O. Interneuron dysfunction in psychiatric disorders. Nat. Rev. Neurosci. 13, 107–120 (2012).

    Article  PubMed  CAS  Google Scholar 

  227. Nardou, R. et al. Oxytocin-dependent reopening of a social reward learning critical period with MDMA. Nature 569, 116–120 (2019).

    Article  CAS  PubMed  Google Scholar 

  228. Ackerman, S. D., Perez-Catalan, N. A., Freeman, M. R. & Doe, C. Q. Astrocytes close a motor circuit critical period. Nature 592, 414–420 (2021).

    Article  CAS  PubMed  Google Scholar 

  229. Fawcett, J. W., Oohashi, T. & Pizzorusso, T. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat. Rev. Neurosci. 20, 451–465 (2019).

    Article  CAS  PubMed  Google Scholar 

  230. Allen, N. J. & Lyons, D. A. Glia as architects of central nervous system formation and function. Science 362, 181–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Tan, C. X., Lane, C. J. B. & Eroglu, C. Role of astrocytes in synapse formation and maturation. Curr. Top. Dev. Biol. 142, 371–407 (2021).

    Article  PubMed  Google Scholar 

  232. Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

    Article  CAS  PubMed  Google Scholar 

  233. Harris, K. D. & Shepherd, G. M. G. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Butt, S. J., Stacey, J. A., Teramoto, Y. & Vagnoni, C. A role for GABAergic interneuron diversity in circuit development and plasticity of the neonatal cerebral cortex. Curr. Opin. Neurobiol. 43, 149–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  235. Wamsley, B. & Fishell, G. Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat. Rev. Neurosci. 18, 299–309 (2017).

    Article  CAS  PubMed  Google Scholar 

  236. Cossart, R. ScienceDirect operational hub cells: a morpho-physiologically diverse class of GABAergic neurons united by a common function. Curr. Opin. Neurobiol. 26, 51–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  237. Vainchtein, I. D. & Molofsky, A. V. Astrocytes and microglia: in sickness and in health. Trends Neurosci. 43, 144–154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Badimon, A. et al. Negative feedback control of neuronal activity by microglia. Nature 586, 417–423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Cserép, C. et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367, 528–537 (2020).

    Article  PubMed  CAS  Google Scholar 

  240. Cserép, C., Pósfai, B. & Dénes, Á. Shaping neuronal fate: functional heterogeneity of direct microglia-neuron interactions. Neuron 109, 222–240 (2020).

    Article  PubMed  CAS  Google Scholar 

  241. Singh, S. K. et al. Astrocytes assemble thalamocortical synapses by bridging NRX1α and NL1 via hevin. Cell 164, 183–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Stogsdill, J. A. et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 551, 192–197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Dallérac, G., Zapata, J. & Rouach, N. Versatile control of synaptic circuits by astrocytes: where, when and how? Nat. Rev. Neurosci. 19, 729–743 (2018).

    Article  PubMed  CAS  Google Scholar 

  244. Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9, 173–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  245. Orduz, D. et al. Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex. eLife 4, 1260 (2015).

    Article  Google Scholar 

  246. Zonouzi, M. et al. Individual oligodendrocytes show bias for inhibitory axons in the neocortex. Cell Rep. 27, 2799–2808.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Benamer, N., Vidal, M., Balia, M. & Angulo, M. C. Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits. Nat. Commun. 11, 5151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Yang, S. M., Michel, K., Jokhi, V., Nedivi, E. & Arlotta, P. Neuron class-specific responses govern adaptive myelin remodeling in the neocortex. Science 370, eabd2109 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Wake, H. et al. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons. Nat. Commun. 6, 7844 (2015).

    Article  CAS  PubMed  Google Scholar 

  250. Minocha, S. et al. NG2 glia are required for vessel network formation during embryonic development. Elife 4, e09102 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Dansu, D. K., Sauma, S. & Casaccia, P. Oligodendrocyte progenitors as environmental biosensors. Semin. Cell Dev. Biol. 116, 38–44 (2021).

    Article  CAS  PubMed  Google Scholar 

  252. Akay, L. A., Effenberger, A. H. & Tsai, L.-H. Cell of all trades: oligodendrocyte precursor cells in synaptic, vascular, and immune function. Gene Dev. 35, 180–198 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Peguera, B., Segarra, M. & Acker-Palmer, A. Neurovascular crosstalk coordinates the central nervous system development. Curr. Opin. Neurobiol. 69, 202–213 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Penna, E., Mangum, J. M., Shepherd, H., Martínez-Cerdeño, V. & Noctor, S. C. Development of the neuro-immune-vascular plexus in the ventricular zone of the prenatal rat neocortex. Cereb. Cortex 31, 2139–2155 (2021).

    Article  PubMed  Google Scholar 

  255. Tan, X. et al. Vascular influence on ventral telencephalic progenitors and neocortical interneuron production. Dev. Cell 36, 624–638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Genestine, M. et al. Vascular-derived SPARC and SerpinE1 regulate interneuron tangential migration and accelerate functional maturation of human stem cell-derived interneurons. eLife 10, e56063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Hammond, T. R., Robinton, D. & Stevens, B. Microglia and the brain: complementary partners in development and disease. Annu. Rev. Cell Dev. Biol. 34, 523–544 (2018).

    Article  CAS  PubMed  Google Scholar 

  258. Thion, M. S. & Garel, S. Microglial ontogeny, diversity and neurodevelopmental functions. Curr. Opin. Genet. Dev. 65, 186–194 (2020).

    Article  CAS  PubMed  Google Scholar 

  259. Alliot, F., Godin, I. & Pessac, B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Dev. Brain Res. 117, 145–152 (1999).

    Article  CAS  Google Scholar 

  260. Verney, C., Monier, A., Fallet-Bianco, C. & Gressens, P. Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J. Anat. 217, 436–448 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Hoshiko, M., Arnoux, I., Avignone, E., Yamamoto, N. & Audinat, E. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J. Neurosci. 32, 15106–15111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Swinnen, N. et al. Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo. Glia 61, 150–163 (2013).

    Article  PubMed  Google Scholar 

  263. Squarzoni, P. et al. Microglia modulate wiring of the embryonic forebrain. Cell Rep. 8, 1271–1279 (2014).

    Article  CAS  PubMed  Google Scholar 

  264. Thion, M. S. et al. Biphasic impact of prenatal inflammation and macrophage depletion on the wiring of neocortical inhibitory circuits. Cell Rep. 28, 1119–1126.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Pont-Lezica, L. et al. Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation. Eur. J. Neurosci. 39, 1551–1557 (2014).

    Article  PubMed  Google Scholar 

  266. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  267. Li, Q. et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101, 207–223.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  268. Bennett, M. L. & Barres, B. A. A genetically distinct microglial subset promotes myelination. EMBO J. 36, 3269–3271 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Hagemeyer, N. et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 134, 441–458 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Ueno, M. et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16, 543–551 (2013).

    Article  CAS  PubMed  Google Scholar 

  271. Nemes-Baran, A. D., White, D. R. & DeSilva, T. M. Fractalkine-dependent microglial pruning of viable oligodendrocyte progenitor cells regulates myelination. Cell Rep. 32, 108047 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Cunningham, C. L., Martínez-Cerdeño, V. & Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Favuzzi, E. et al. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell 184, 4048–4063 (2021).

    Article  CAS  PubMed  Google Scholar 

  274. Bennett, H. C. & Kim, Y. Pericytes across the lifetime in the central nervous system. Front. Cell Neurosci. 15, 627291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Andreone, B. J., Lacoste, B. & Gu, C. Neuronal and vascular interactions. Annu. Rev. Neurosci. 38, 1–22 (2015).

    Article  CAS  Google Scholar 

  277. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Utz, S. G. et al. Early fate defines microglia and non-parenchymal brain macrophage development. Cell 181, 557–573.e18 (2020).

    Article  CAS  PubMed  Google Scholar 

  279. Wong, F. K. & Marín, O. Developmental cell death in the cerebral cortex. Annu. Rev. Cell Dev. Bi 35, 1–20 (2019).

    Article  CAS  Google Scholar 

  280. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Selimbeyoglu, A. et al. Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci. Transl. Med. 9, eaah6733 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. Fazzari, P. et al. Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature 464, 1376–1380 (2010).

    Article  CAS  PubMed  Google Scholar 

  283. Flames, N. & Marín, O. Developmental mechanisms underlying the generation of cortical interneuron diversity. Neuron 46, 377–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  284. del Pino, I. et al. Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron 79, 1152–1168 (2013).

    Article  PubMed  CAS  Google Scholar 

  285. Amegandjin, C. A. et al. Sensitive period for rescuing parvalbumin interneurons connectivity and social behavior deficits caused by TSC1 loss. Nat. Commun. 12, 3653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Malik, R. et al. Tsc1 represses parvalbumin expression and fast-spiking properties in somatostatin lineage cortical interneurons. Nat. Commun. 10, 4994 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Estes, M. L. & McAllister, A. K. Maternal immune activation: Implications for neuropsychiatric disorders. Science 353, 772–777 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Han, V. X., Patel, S., Jones, H. F. & Dale, R. C. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat. Rev. Neurol. 17, 564–579 (2021).

    Article  PubMed  Google Scholar 

  289. Yim, Y. S. et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549, 482–487 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  290. Kalish, B. T. et al. Maternal immune activation in mice disrupts proteostasis in the fetal brain. Nat. Neurosci. 24, 204–213 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  291. Ikezu, S. et al. Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioral abnormalities. Mol. Psychiatr. 26, 1808–1831 (2020).

    Article  CAS  Google Scholar 

  292. Canetta, S. et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol. Psychiatr. 21, 956–968 (2016).

    Article  CAS  Google Scholar 

  293. Bara, A., Ferland, J.-M. N., Rompala, G., Szutorisz, H. & Hurd, Y. L. Cannabis and synaptic reprogramming of the developing brain. Nat. Rev. Neurosci. 22, 423–438 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Scheyer, A. F., Melis, M., Trezza, V. & Manzoni, O. J. J. Consequences of perinatal cannabis exposure. Trends Neurosci. 42, 871–884 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Scheyer, A. F. et al. Cannabinoid exposure via lactation in rats disrupts perinatal programming of the gamma-aminobutyric acid trajectory and select early-life behaviors. Biol. Psychiatr. 87, 666–677 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Thion as well as all the members of their laboratories for constructive comments. This work was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 646925) and by the Fondation Bettencourt Schueller to R.C. and by the ANR iReelax and Microsenso (grant agreements no. 198187 and no. 198184), and the FRM Équipe and the Cercle FSER laureate programmes to S.G. R.C. is supported by CNRS, S.G. is a member of the ENP programme.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Rosa Cossart or Sonia Garel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks P. Arlotta, S. Butt, L. Nguyen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cajal–Retzius cells

Early born guidepost neurons located in the marginal zone that are largely eliminated in the postnatal cortex and maintained in the hippocampus.

Subplate cells

Early born guidepost neurons located deep the cortical plate that are largely eliminated in the postnatal cortex.

Ventricular zones

The proliferative zones lining the ventricular surface.

Ganglionic eminences

Transitory structures in the development of the forebrain that are the site of genesis of most GABAergic cortical neurons.

Cortical plate

The transient developmental structure formed in corticogenesis, which includes cortical layers 2–6.

Synaptic pruning

The elimination of supernumerary synapses during development.

Gap junction

A type of cellular junction in which adjacent cells are connected through protein channels, making them chemically or electrically coupled.

Proto-ensembles

The first groups of co-active neurons from which other ensembles develop.

Developmental apoptosis

Programmed cell death during development.

Outer subventricular zone

A proliferative zone located far from the ventricular zone, which contains basal progenitors and is found in ferrets and primates but not in mice.

Basal progenitors

Progenitors located in the outer subventricular zone.

Intermediate progenitors

Progenitors located in the subventricular zone that are present in all mammalian species.

Hub cells

Neurons displaying an exceptional output connectivity that can influence network dynamics.

Pioneer neurons

Neurons born at the earliest time points of neurogenesis.

Critical period

The developmental period of experience-dependent refinement of cortical circuits.

Perineuronal nets

Extracellular matrix structures supporting synapse stabilization.

Neuronal ensemble

A group of co-active neurons.

Sparsification

The developmental process by which activity shifts from highly correlated to sparse.

Active exploration

Self-initiated examination of the external world.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cossart, R., Garel, S. Step by step: cells with multiple functions in cortical circuit assembly. Nat Rev Neurosci 23, 395–410 (2022). https://doi.org/10.1038/s41583-022-00585-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00585-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing