Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

High-throughput platforms for machine learning-guided lipid nanoparticle design

Abstract

To design a lipid nanoparticle (LNP) that effectively delivers nucleic acids to a specific cell or tissue type, multiple lipid components and their relative proportions must be decided on from a large number of options. As there is an incomplete understanding of the relationship between the molecular composition of a delivery vehicle, its structure and its activity, the decision is made by screening many formulations. Emerging technologies have rapidly accelerated the generation of large LNP libraries and the testing of their physicochemical properties and behaviour in vitro and in vivo. These screening tools are being increasingly integrated within artificial intelligence-driven discovery systems, wherein data obtained from the characterization and biological testing of LNPs are fed into machine learning models. These models can provide non-obvious relationships between composition and physical or biological outputs, or predict entirely new lipid structures. In this Perspective, we discuss advancements in the automation and parallelization of chemical synthesis, particle formulation, characterization and pharmacological screening that have improved the throughput of generating and testing large libraries of LNPs for nucleic acid delivery. We notably highlight the short-term potential of coupling these high-throughput platforms with machine learning to accelerate the prediction of optimal nucleic acid LNPs for new therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrating automation and machine learning to accelerate LNP discovery.
Fig. 2: The size of the LNP design space.
Fig. 3: Strategies for the automation of lipid synthesis.
Fig. 4: Throughput and scalability of mixing methods for LNPs.
Fig. 5: Options for parallelizing the in vivo screening of LNPs.

Similar content being viewed by others

References

  1. Anderson, D. G., Lynn, D. M. & Langer, R. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed. 42, 3153–3158 (2003).

    Article  CAS  Google Scholar 

  2. Breunig, M., Lungwitz, U., Liebl, R. & Goepferich, A. Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc. Natl Acad. Sci. USA 104, 14454–14459 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lynn, D. M. & Langer, R. Degradable poly(β-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J. Am. Chem. Soc. 122, 10761–10768 (2000).

    Article  CAS  Google Scholar 

  4. Siegwart, D. J. et al. Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc. Natl Acad. Sci. USA 108, 12996–13001 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wightman, L. et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med. 3, 362–372 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018).

    Article  Google Scholar 

  8. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Maurer, M. S. et al. Patisiran treatment in patients with transthyretin cardiac amyloidosis. N. Engl. J. Med. 389, 1553–1565 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hassett, K. J. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 15, 1–11 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Verma, M. et al. The landscape for lipid-nanoparticle-based genomic medicines. Nat. Rev. Drug Discov. 22, 349–350 (2023).

    Article  PubMed  CAS  Google Scholar 

  12. Dehghani-Ghahnaviyeh, S. et al. Ionizable amino lipids distribution and effects on DSPC/cholesterol membranes: implications for lipid nanoparticle structure. J. Phys. Chem. B 127, 6928–6939 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. McDonald, S. M. et al. Applied machine learning as a driver for polymeric biomaterials design. Nat. Commun. 14, 4838 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Li, B. et al. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nat. Mater. 23, 1002–1008 (2024).

    Article  PubMed  CAS  Google Scholar 

  15. Han, X. et al. Fast and facile synthesis of amidine-incorporated degradable lipids for versatile mRNA delivery in vivo. Nat. Chem. 16, 1687–1697 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Han, X. et al. Optimization of the activity and biodegradability of ionizable lipids for mRNA delivery via directed chemical evolution. Nat. Biomed. Eng. 8, 1412–1424 (2024).

    Article  PubMed  CAS  Google Scholar 

  17. Xue, L. et al. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. Nat. Nanotechnol. https://doi.org/10.1038/s41565-024-01747-6 (2024).

  18. Han, X. et al. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18, 1105–1114 (2023).

    Article  PubMed  CAS  Google Scholar 

  19. Han, X. et al. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12, 7233 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  PubMed  CAS  Google Scholar 

  23. Billingsley, M. M. et al. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells. Nano Lett. 22, 533–542 (2022).

    Article  PubMed  CAS  Google Scholar 

  24. Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Patel, S. et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lokugamage, M. P., Sago, C. D. & Dahlman, J. E. Testing thousands of nanoparticles in vivo using DNA barcodes. Curr. Opin. Biomed. Eng. 7, 1–8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zheng, L., Bandara, S. R., Tan, Z. & Leal, C. Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm. Proc. Natl Acad. Sci. USA 120, e2301067120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Koltover, I., Salditt, T., Rädler, J. O. & Safinya, C. R. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281, 78–81 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. Álvarez-Benedicto, E. et al. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater. Sci. 10, 549–559 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Herrera, M., Kim, J., Eygeris, Y., Jozic, A. & Sahay, G. Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. Biomater. Sci. 9, 4289–4300 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Radmand, A. et al. Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart. Proc. Natl Acad. Sci. USA 121, e2307801120 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mui, B. L. et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids 2, e139 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gindy, M. E. et al. Mechanism of macromolecular structure evolution in self-assembled lipid nanoparticles for siRNA delivery. Langmuir 30, 4613–4622 (2014).

    Article  PubMed  CAS  Google Scholar 

  35. Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    Article  PubMed  CAS  Google Scholar 

  36. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Billingsley, M. M. et al. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 20, 1578–1589 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 5, 4277 (2014).

    Article  PubMed  CAS  Google Scholar 

  39. Hajj, K. A. et al. Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH. Small 15, 1805097 (2019).

    Article  Google Scholar 

  40. Yonezawa, S., Koide, H. & Asai, T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug Deliv. Rev. 154, 64–78 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li, H. et al. Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics 12, 6422–6436 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. McKay, P. F. et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat. Commun. 11, 3523 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Palanki, R. et al. Ionizable lipid nanoparticles for therapeutic base editing of congenital brain disease. ACS Nano 17, 13594–13610 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wei, T. et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat. Commun. 14, 7322 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Thatte, A. S. et al. mRNA lipid nanoparticles for ex vivo engineering of immunosuppressive T cells for autoimmunity therapies. Nano Lett. 23, 10179–10188 (2023).

    Article  PubMed  CAS  Google Scholar 

  46. Billingsley, M. M. et al. In vivo mRNA CAR T cell engineering via targeted ionizable lipid nanoparticles with extrahepatic tropism. Small 20, 2304378 (2024).

    Article  CAS  Google Scholar 

  47. Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Forsyth, V., Rzeczycki, P., Taylor, D. & Ariosa, A. Enhancing transfection efficiency of primary immune cells through lipid nanoparticle mediated delivery. J. Immunol. 212, 0857_6526 (2024).

    Google Scholar 

  49. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sun, Y. et al. In vivo editing of lung stem cells for durable gene correction in mice. Science 384, 1196–1202 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Qiu, M. et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, K. A. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J. Control. Release 345, 819–831 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Omo-Lamai, S. et al. Physicochemical targeting of lipid nanoparticles to the lungs induces clotting: mechanisms and solutions. Adv. Mater. 36, 2312026 (2024).

    Article  CAS  Google Scholar 

  54. Walkey, C. D. et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8, 2439–2455 (2014).

    Article  PubMed  CAS  Google Scholar 

  55. Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Article  PubMed  CAS  Google Scholar 

  56. Cai, R. et al. Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism. Proc. Natl Acad. Sci. USA 119, e2200363119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Abdelkhaliq, A. et al. Impact of nanoparticle surface functionalization on the protein corona and cellular adhesion, uptake and transport. J. Nanobiotechnol. 16, 70 (2018).

    Article  Google Scholar 

  58. Baimanov, D. et al. In situ analysis of nanoparticle soft corona and dynamic evolution. Nat. Commun. 13, 5389 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Lee, Y. K., Choi, E.-J., Webster, T. J., Kim, S.-H. & Khang, D. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int. J. Nanomed. 10, 97–113 (2015).

    Google Scholar 

  60. Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

    Article  Google Scholar 

  61. Xu, Y. et al. AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery. Nat. Commun. 15, 6305 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Cheng, L. et al. Machine learning elucidates design features of plasmid deoxyribonucleic acid lipid nanoparticles for cell type-preferential transfection. ACS Nano 18, 28735–28747 (2024).

    Article  PubMed  CAS  Google Scholar 

  63. Dormán, G. The rise, fall and revival of combinatorial chemistry. Nachr. Chem. 70, 70–72 (2022).

    Article  Google Scholar 

  64. Liu, Y. et al. Ultrastiff metamaterials generated through a multilayer strategy and topology optimization. Nat. Commun. 15, 2984 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ha, C. S. et al. Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning. Nat. Commun. 14, 5765 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article  PubMed  CAS  Google Scholar 

  67. Hashiba, K. et al. Branching ionizable lipids can enhance the stability, fusogenicity, and functional delivery of mRNA. Small Sci. 3, 2200071 (2023).

    Article  PubMed  CAS  Google Scholar 

  68. Mukalel, A. J. et al. Oxidized mRNA lipid nanoparticles for in situ chimeric antigen receptor monocyte engineering. Adv. Funct. Mater. 34, 2312038 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Riley, R. S. et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci. Adv. 7, eaba1028 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Chen, J. et al. Combinatorial design of ionizable lipid nanoparticles for muscle-selective mRNA delivery with minimized off-target effects. Proc. Natl Acad. Sci. USA 120, e2309472120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Fenton, O. S. et al. Synthesis and biological evaluation of ionizable lipid materials for the in vivo delivery of messenger RNA to B lymphocytes. Adv. Mater. 29, 1606944 (2017).

    Article  Google Scholar 

  72. Fenton, O. S. et al. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Adv. Mater. 28, 2939–2943 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hatit, M. Z. C. et al. Nanoparticle stereochemistry-dependent endocytic processing improves in vivo mRNA delivery. Nat. Chem. 15, 508–515 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Da Silva Sanchez, A. J. et al. Substituting racemic ionizable lipids with stereopure ionizable lipids can increase mRNA delivery. J. Control. Release 353, 270–277 (2023).

    Article  PubMed  Google Scholar 

  75. Li, Z. et al. Enzyme-catalyzed one-step synthesis of ionizable cationic lipids for lipid nanoparticle-based mRNA COVID-19 vaccines. ACS Nano 16, 18936–18950 (2022).

    Article  PubMed  CAS  Google Scholar 

  76. Jacobsen, E. N. Asymmetric catalysis of epoxide ring-opening reactions. Acc. Chem. Res. 33, 421–431 (2000).

    Article  PubMed  CAS  Google Scholar 

  77. Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lee, J. et al. A fully automated platform for photoinitiated RAFT polymerization. Digit. Discov. 2, 219–233 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Götz, J. et al. High-throughput synthesis provides data for predicting molecular properties and reaction success. Sci. Adv. 9, eadj2314 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kong, F., Yuan, L., Zheng, Y. F. & Chen, W. Automatic liquid handling for life science: a critical review of the current state of the art. SLAS Technol. 17, 169–185 (2012).

    Article  CAS  Google Scholar 

  81. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  PubMed  CAS  Google Scholar 

  82. Dai, T. et al. Autonomous mobile robots for exploratory synthetic chemistry. Nature 635, 890–897 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).

    Article  PubMed  CAS  Google Scholar 

  84. Nambiar, A. M. K. et al. Bayesian optimization of computer-proposed multistep synthetic routes on an automated robotic flow platform. ACS Cent. Sci. 8, 825–836 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

    Article  PubMed  CAS  Google Scholar 

  86. Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 360, 186–190 (2018).

    Article  PubMed  CAS  Google Scholar 

  87. Fromer, J. C. & Coley, C. W. An algorithmic framework for synthetic cost-aware decision making in molecular design. Nat. Comput. Sci. 4, 440–450 (2024).

    Article  PubMed  Google Scholar 

  88. Kyranos, J. N., Cai, H., Wei, D. & Goetzinger, W. K. High-throughput high-performance liquid chromatography/mass spectrometry for modern drug discovery. Curr. Opin. Biotechnol. 12, 105–111 (2001).

    Article  PubMed  CAS  Google Scholar 

  89. Ginsburg-Moraff, C. et al. Integrated and automated high-throughput purification of libraries on microscale. SLAS Technol. 27, 350–360 (2022).

    Article  PubMed  CAS  Google Scholar 

  90. Su, W.-C. et al. A platform method for simultaneous quantification of lipid and nucleic acid components in lipid nanoparticles. J. Chromatogr. A 1746, 465788 (2025).

    Article  PubMed  CAS  Google Scholar 

  91. Munjoma, N. et al. High throughput LC-MS platform for large scale screening of bioactive polar lipids in human plasma and serum. J. Proteome Res. 21, 2596–2608 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Haas, C. P. et al. Open-source chromatographic data analysis for reaction optimization and screening. ACS Cent. Sci. 9, 307–317 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Herck, J. V. et al. Operator-independent high-throughput polymerization screening based on automated inline NMR and online SEC. Digit. Discov. 1, 519–526 (2022).

    Article  Google Scholar 

  94. Ammini, G. D., Hooker, J. P., Herck, J. V., Kumar, A. & Junkers, T. Comprehensive high-throughput screening of photopolymerization under light intensity variation using inline NMR monitoring. Polym. Chem. 14, 2708–2716 (2023).

    Article  CAS  Google Scholar 

  95. Hu, G. & Qiu, M. Machine learning-assisted structure annotation of natural products based on MS and NMR data. Nat. Prod. Rep. 40, 1735–1753 (2023).

    Article  PubMed  CAS  Google Scholar 

  96. Kulkarni, J. A. et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12, 4787–4795 (2018).

    Article  PubMed  CAS  Google Scholar 

  97. Maeki, M. et al. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers. PLoS ONE 12, e0187962 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Jung, H. N., Lee, S.-Y., Lee, S., Youn, H. & Im, H.-J. Lipid nanoparticles for delivery of RNA therapeutics: current status and the role of in vivo imaging. Theranostics 12, 7509–7531 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Strelkova Petersen, D. M., Chaudhary, N., Arral, M. L., Weiss, R. M. & Whitehead, K. A. The mixing method used to formulate lipid nanoparticles affects mRNA delivery efficacy and organ tropism. Eur. J. Pharm. Biopharm. 192, 126–135 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Padilla, M. et al. Solution biophysics identifies lipid nanoparticle non-sphericity, polydispersity, and dependence on internal ordering for efficacious mRNA delivery. Preprint at bioRxiv https://doi.org/10.1101/2024.12.19.629496 (2025).

  101. Fan, Y. et al. Automated high-throughput preparation and characterization of oligonucleotide-loaded lipid nanoparticles. Int. J. Pharm. 599, 120392 (2021).

    Article  PubMed  CAS  Google Scholar 

  102. Valente, I., Celasco, E., Marchisio, D. L. & Barresi, A. A. Nanoprecipitation in confined impinging jets mixers: production, characterization and scale-up of pegylated nanospheres and nanocapsules for pharmaceutical use. Chem. Eng. Sci. 77, 217–227 (2012).

    Article  CAS  Google Scholar 

  103. He, Z. et al. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery. Acta Biomater. 81, 195–207 (2018).

    Article  PubMed  CAS  Google Scholar 

  104. Shepherd, S. J. et al. Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines. Proc. Natl Acad. Sci. USA 120, e2303567120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Shepherd, S. J. et al. Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device. Nano Lett. 21, 5671–5680 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Hammel, M. et al. Correlating the structure and gene silencing activity of oligonucleotide-loaded lipid nanoparticles using small-angle X-ray scattering. ACS Nano 17, 11454–11465 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Valencia, P. M., Farokhzad, O. C., Karnik, R. & Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 7, 623–629 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Kroth, I., Karimov, M. & Karongo, R. Automated preparation of oligonucleotide-loaded lipid nanoparticles using Andrew+TM pipetting robot for high-throughput in-vitro screening. Waters https://www.waters.com/content/dam/waters/en/app-notes/2023/720008090/720008090-en.pdf (2024).

  109. Metzger, L. & Kind, M. On the mixing in confined impinging jet mixers — time scale analysis and scale-up using CFD coarse-graining methods. Chem. Eng. Res. Des. 109, 464–476 (2016).

    Article  CAS  Google Scholar 

  110. Shepherd, S. J., Issadore, D. & Mitchell, M. J. Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials 274, 120826 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Sreenivasan, K. R. & Antonia, R. A. The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435–472 (1997).

    Article  Google Scholar 

  112. Feng, J., Markwalter, C. E., Tian, C., Armstrong, M. & Prud’homme, R. K. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale. J. Transl. Med. 17, 200 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wilhelm, E., Neumann, C., Duttenhofer, T., Pires, L. & Rapp, B. E. Connecting microfluidic chips using a chemically inert, reversible, multichannel chip-to-world-interface. Lab Chip 13, 4343–4351 (2013).

    Article  PubMed  CAS  Google Scholar 

  114. Ripoll, M. et al. Optimal self-assembly of lipid nanoparticles (LNP) in a ring micromixer. Sci. Rep. 12, 9483 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Kimura, N. et al. Development of a microfluidic-based post-treatment process for size-controlled lipid nanoparticles and application to siRNA delivery. ACS Appl. Mater. Interfaces 12, 34011–34020 (2020).

    Article  PubMed  CAS  Google Scholar 

  116. Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article  PubMed  CAS  Google Scholar 

  117. Belliveau, N. M. et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids 1, e37 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Leung, A. K. K., Tam, Y. Y. C., Chen, S., Hafez, I. M. & Cullis, P. R. Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J. Phys. Chem. B 119, 8698–8706 (2015).

    Article  PubMed  CAS  Google Scholar 

  119. Williams, M. S., Longmuir, K. J. & Yager, P. A practical guide to the staggered herringbone mixer. Lab Chip 8, 1121–1129 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Longwell, S. A. & Fordyce, P. M. micrIO: an open-source autosampler and fraction collector for automated microfluidic input–output. Lab Chip 20, 93–106 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hanna, A. R. et al. Automated and parallelized microfluidic generation of large and precisely-defined lipid nanoparticle libraries. Preprint at bioRxiv https://doi.org/10.1101/2025.05.26.656157 (2025).

  122. Nag, K. et al. DoE-derived continuous and robust process for manufacturing of pharmaceutical-grade wide-range LNPs for RNA-vaccine/drug delivery. Sci. Rep. 12, 9394 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. McLeod, E. et al. High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy. ACS Nano 9, 3265–3273 (2015).

    Article  PubMed  CAS  Google Scholar 

  124. Graewert, M. A. et al. Quantitative size-resolved characterization of mRNA nanoparticles by in-line coupling of asymmetrical-flow field-flow fractionation with small angle X-ray scattering. Sci. Rep. 13, 15764 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Li, S. et al. Payload distribution and capacity of mRNA lipid nanoparticles. Nat. Commun. 13, 5561 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Li, S. et al. Single-particle spectroscopic chromatography reveals heterogeneous RNA loading and size correlations in lipid nanoparticles. ACS Nano 18, 15729–15743 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Penders, J. et al. Single particle automated Raman trapping analysis. Nat. Commun. 9, 4256 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lowenthal, M. S., Antonishek, A. S. & Phinney, K. W. Quantification of mRNA in lipid nanoparticles using mass spectrometry. Anal. Chem. 96, 1214–1222 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Medina, J. et al. Omic-scale high-throughput quantitative LC–MS/MS approach for circulatory lipid phenotyping in clinical research. Anal. Chem. 95, 3168–3179 (2023).

    Article  PubMed  CAS  Google Scholar 

  130. Kinsey, C. et al. Determination of lipid content and stability in lipid nanoparticles using ultra high-performance liquid chromatography in combination with a corona charged aerosol detector. Electrophoresis 43, 1091–1100 (2022).

    Article  PubMed  CAS  Google Scholar 

  131. Cui, H. et al. LUMI-lab: a foundation model-driven autonomous platform enabling discovery of new ionizable lipid designs for mRNA delivery. Preprint at bioRxiv https://doi.org/10.1101/2025.02.14.638383 (2025).

  132. Maharjan, R., Kim, K. H., Lee, K., Han, H.-K. & Jeong, S. H. Machine learning-driven optimization of mRNA-lipid nanoparticle vaccine quality with XGBoost/Bayesian method and ensemble model approaches. J. Pharm. Anal. 14, 100996 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Stach, E. et al. Autonomous experimentation systems for materials development: a community perspective. Matter 4, 2702–2726 (2021).

    Article  Google Scholar 

  134. Land, O., Seider, W. D. & Lee, D. Convolutional neural network augmented soft-sensor for autonomous microfluidic production of uniform bubbles. Chem. Eng. J. 499, 156494 (2024).

    Article  CAS  Google Scholar 

  135. Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Chen, J. et al. Navigating phase diagram complexity to guide robotic inorganic materials synthesis. Nat. Synth. 3, 606–614 (2024).

    Article  CAS  Google Scholar 

  137. Kusne, A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat. Commun. 11, 5966 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Jan, E. et al. High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano 2, 928–938 (2008).

    Article  PubMed  CAS  Google Scholar 

  139. Frei, A. P. et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat. Methods 13, 269–275 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Krohn-Grimberghe, M. et al. Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. Nat. Biomed. Eng. 4, 1076–1089 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Connors, J. et al. Lipid nanoparticles (LNP) induce activation and maturation of antigen presenting cells in young and aged individuals. Commun. Biol. 6, 188 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Haley, R. M. et al. Lipid nanoparticle delivery of small proteins for potent in vivo RAS inhibition. ACS Appl. Mater. Interfaces 15, 21877–21892 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Han, E. L. et al. Predictive high-throughput platform for dual screening of mRNA lipid nanoparticle blood-brain barrier transfection and crossing. Nano Lett. 24, 1477–1486 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Liu, R., Jiang, W., Walkey, C. D., Chan, W. C. W. & Cohen, Y. Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties. Nanoscale 7, 9664–9675 (2015).

    Article  PubMed  CAS  Google Scholar 

  145. Alabi, C. A. et al. Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery. Proc. Natl Acad. Sci. USA 110, 12881–12886 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Roosa, C. A. et al. Conjugation of IL-33 to microporous annealed particle scaffolds enhances type 2-like immune responses in vitro and in vivo. Adv. Healthc. Mater. 13, 2400249 (2024).

    Article  CAS  Google Scholar 

  147. Sahay, G. et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31, 653–658 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Rui, Y. et al. High-throughput and high-content bioassay enables tuning of polyester nanoparticles for cellular uptake, endosomal escape, and systemic in vivo delivery of mRNA. Sci. Adv. 8, eabk2855 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Ponsoda, X., Jover, R., Castell, J. V. & Gómez-Lechón, M. J. Measurement of intracellular LDH activity in 96-well cultures: a rapid and automated assay for cytotoxicity studies. J. Tissue Cult. Methods 13, 21–24 (1991).

    Article  Google Scholar 

  150. Marin, D. et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nat. Med. 30, 772–784 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Kim, J., Vaughan, H. J., Zamboni, C. G., Sunshine, J. C. & Green, J. J. High-throughput evaluation of polymeric nanoparticles for tissue-targeted gene expression using barcoded plasmid DNA. J. Control. Release 337, 105–116 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Guimaraes, P. P. G. et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J. Control. Release 316, 404–417 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

    Article  PubMed  CAS  Google Scholar 

  155. Vaidya, K. et al. Pooled nanoparticle screening using a chemical barcoding approach. Angew. Chem. Int. Ed. 137, e202420052 (2025).

    Article  Google Scholar 

  156. Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science 377, eabm5551 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. El‐Mayta, R. et al. A nanoparticle platform for accelerated in vivo oral delivery screening of nucleic acids. Adv. Ther. 4, 2000111 (2021).

    Article  Google Scholar 

  158. Hatit, M. Z. C. et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat. Nanotechnol. 17, 310–318 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Hamilton, A. G. et al. High-throughput in vivo screening identifies differential influences on mRNA lipid nanoparticle immune cell delivery by administration route. ACS Nano 18, 16151–16165 (2024).

    Article  PubMed  CAS  Google Scholar 

  160. Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat. Nanotechnol. 17, 871–879 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Zhang, Q. et al. Predictable control of RNA lifetime using engineered degradation-tuning RNAs. Nat. Chem. Biol. 17, 828–836 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  PubMed  CAS  Google Scholar 

  163. Paunovska, K. et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 18, 2148–2157 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Sago, C. D. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Buschmann, T. & Bystrykh, L. V. Levenshtein error-correcting barcodes for multiplexed DNA sequencing. BMC Bioinform. 14, 272 (2013).

    Article  Google Scholar 

  166. Witten, J. et al. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02490-y (2024).

  167. Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L. & Lopez, A. A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408, 189–215 (2020).

    Article  Google Scholar 

  168. Yamankurt, G. et al. Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat. Biomed. Eng. 3, 318–327 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Kumar, R. et al. Efficient polymer-mediated delivery of gene-editing ribonucleoprotein payloads through combinatorial design, parallelized experimentation, and machine learning. ACS Nano 14, 17626–17639 (2020).

    Article  PubMed  CAS  Google Scholar 

  170. Pattipeiluhu, R. et al. Anionic lipid nanoparticles preferentially deliver mRNA to the hepatic reticuloendothelial system. Adv. Mater. 34, 2201095 (2022).

    Article  CAS  Google Scholar 

  171. Mandl, H. K. et al. Optimizing biodegradable nanoparticle size for tissue-specific delivery. J. Control. Release 314, 92–101 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Tropsha, A., Isayev, O., Varnek, A., Schneider, G. & Cherkasov, A. Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR. Nat. Rev. Drug Discov. 23, 141–155 (2024).

    Article  PubMed  Google Scholar 

  174. Walsh, D. J. et al. Community Resource for Innovation in Polymer Technology (CRIPT): a scalable polymer material data structure. ACS Cent. Sci. 9, 330–338 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Kuenneth, C. & Ramprasad, R. polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics. Nat. Commun. 14, 4099 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Meyer, T. A., Ramirez, C., Tamasi, M. J. & Gormley, A. J. A user’s guide to machine learning for polymeric biomaterials. ACS Polym. Au 3, 141–157 (2023).

    Article  PubMed  CAS  Google Scholar 

  177. Xue, K. et al. Biomaterials by design: harnessing data for future development. Mater. Today Bio 12, 100165 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Haley, R. M. et al. Lipid nanoparticles for in vivo lung delivery of CRISPR-Cas9 ribonucleoproteins allow gene editing of clinical targets. ACS Nano 19, 13790–13804 (2025).

    Article  PubMed  CAS  Google Scholar 

  179. Tang, C. et al. mRNA-laden lipid-nanoparticle-enabled in situ CAR-macrophage engineering for the eradication of multidrug-resistant bacteria in a sepsis mouse model. ACS Nano 18, 2261–2278 (2024).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

M.J.M. acknowledges support from the US National Institutes of Health (NICHD R01 HD115877), the Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI), a US National Science Foundation (NSF) CAREER award (CBET-2145491), the American Cancer Society Research Scholar Grant (RSG-22-122-01-ET) and the Cystic Fibrosis Foundation (MITCHE24I0). D.A.I. acknowledges support from the Wellcome Leap R3 programme, a NSF Materials Research Science and Engineering Centers (MRSECs) grant (DMR-2309034), NSF Biofoundry and the Center for Precision Engineering for Health at University of Pennsylvania. A.R.H. is supported by the US National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Michael J. Mitchell.

Ethics declarations

Competing interests

M.J.M. is named on patents describing the use of lipid nanoparticles and lipid compositions for nucleic acid delivery that are discussed in this article. D.A.I. is a founder and holds equity in InfiniFluidics. A.R.H. declares no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Xing-Jie Liang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanna, A.R., Issadore, D.A. & Mitchell, M.J. High-throughput platforms for machine learning-guided lipid nanoparticle design. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00831-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-025-00831-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research