Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Manipulation of the nucleotide pool in human, bacterial and plant immunity

Abstract

The cell-autonomous innate immune system is responsible for sensing and mitigating viral infection at the level of individual cells. Many of the mechanisms used by the cell-autonomous innate immune system in eukaryotic cells are ancient and have evolutionary roots in bacterial systems that defend against phage infection. Studies from recent years have shown that modification of the free nucleotide pool is central to many of these conserved immune mechanisms. In this Review, we explain how immune pathways manipulate the available pool of nucleotides to deprive viruses of molecules essential for their replication, how immune proteins chemically modify nucleotides to generate immune signalling molecules, and how cell-autonomous innate immune mechanisms produce altered nucleotides that poison viral replication. We also discuss the mechanisms used by viruses to antagonize nucleotide-based immunity. Finally, we explore the evolutionary logic of using nucleotides as building blocks for immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nucleotide depletion as an antiviral strategy.
Fig. 2: Nucleotides as immune signalling molecules.
Fig. 3: Viral evasion of nucleotide-based immune signalling.
Fig. 4: Viperins produce antiviral molecules.

Similar content being viewed by others

References

  1. Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 (2015).

    Article  CAS  Google Scholar 

  2. Randow, F., MacMicking, J. D. & James, L. C. Cellular self-defense: how cell-autonomous immunity protects against pathogens. Science 340, 701–706 (2013).

    Article  CAS  Google Scholar 

  3. Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nat. Immunol. 7, 131–137 (2006).

    Article  CAS  Google Scholar 

  4. Thompson, M. R., Kaminski, J. J., Kurt-Jones, E. A. & Fitzgerald, K. A. Pattern recognition receptors and the innate immune response to viral infection. Viruses 3, 920–940 (2011).

    Article  CAS  Google Scholar 

  5. Schoggins, J. W. Interferon-stimulated genes: what do they all do? Annu. Rev. Virol. 6, 567–584 (2019).

    Article  CAS  Google Scholar 

  6. Ledvina, H. E. & Whiteley, A. T. Conservation and similarity of bacterial and eukaryotic innate immunity. Nat. Rev. Microbiol. 22, 420–434 (2024).

    Article  CAS  Google Scholar 

  7. Wein, T. & Sorek, R. Bacterial origins of human cell-autonomous innate immune mechanisms. Nat. Rev. Immunol. 22, 629–638 (2022). Review on innate immune pathways that are conserved from bacteria to eukaryotes.

    Article  CAS  Google Scholar 

  8. Culbertson, E. M. & Levin, T. C. Eukaryotic CD-NTase, STING, and viperin proteins evolved via domain shuffling, horizontal transfer, and ancient inheritance from prokaryotes. PLoS Biol. 21, e3002436 (2023).

    Article  CAS  Google Scholar 

  9. Shomar, H. et al. Viperin immunity evolved across the tree of life through serial innovations on a conserved scaffold. Nat. Ecol. Evol. 8, 1667–1679 (2024).

    Article  Google Scholar 

  10. Slavik, K. M. & Kranzusch, P. J. CBASS to cGAS-STING: the origins and mechanisms of nucleotide second messenger immune signaling. Annu. Rev. Virol. 10, 423–453 (2023).

    Article  CAS  Google Scholar 

  11. Bobadilla Ugarte, P., Barendse, P. & Swarts, D. C. Argonaute proteins confer immunity in all domains of life. Curr. Opin. Microbiol. 74, 102313 (2023).

    Article  CAS  Google Scholar 

  12. Wein, T. et al. CARD domains mediate anti-phage defence in bacterial gasdermin systems. Nature 639, 727–734 (2025).

    Article  CAS  Google Scholar 

  13. Bernheim, A., Cury, J. & Poirier, E. Z. The immune modules conserved across the tree of life: towards a definition of ancestral immunity. PLoS Biol. 22, e3002717 (2024).

    Article  CAS  Google Scholar 

  14. Goldstone, D. C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011). Reports the discovery of deoxynucleotide depletion as an antiviral mechanism in human cells.

    Article  CAS  Google Scholar 

  15. Lahouassa, H. et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 13, 223–228 (2012).

    Article  CAS  Google Scholar 

  16. Powell, R. D., Holland, P. J., Hollis, T. & Perrino, F. W. Aicardi-Goutières syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J. Biol. Chem. 286, 43596–43600 (2011).

    Article  CAS  Google Scholar 

  17. Hsueh, B. Y. et al. Phage defence by deaminase-mediated depletion of deoxynucleotides in bacteria. Nat. Microbiol. 7, 1210–1220 (2022).

    Article  CAS  Google Scholar 

  18. Tal, N. et al. Bacteria deplete deoxynucleotides to defend against bacteriophage infection. Nat. Microbiol. 7, 1200–1209 (2022). Together with Hsueh et al. (2022), reports the discovery of deoxynucleotide depletion as an antiviral mechanism in bacterial cells.

    Article  CAS  Google Scholar 

  19. Heaton, N. S. Revisiting the concept of a cytopathic viral infection. PLoS Pathog. 13, e1006409 (2017).

    Article  Google Scholar 

  20. Heaton, N. S. et al. Long-term survival of influenza virus infected club cells drives immunopathology. J. Exp. Med. 211, 1707–1714 (2014).

    Article  CAS  Google Scholar 

  21. Diamond, T. L. et al. Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J. Biol. Chem. 279, 51545–51553 (2004).

    Article  CAS  Google Scholar 

  22. Kim, B., Nguyen, L. A., Daddacha, W. & Hollenbaugh, J. A. Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages. J. Biol. Chem. 287, 21570–21574 (2012).

    Article  CAS  Google Scholar 

  23. Goujon, C. et al. SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 4, 1–11 (2007).

    Article  Google Scholar 

  24. Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011).

    Article  CAS  Google Scholar 

  25. Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011).

    Article  CAS  Google Scholar 

  26. Srivastava, S. et al. Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for Cullin 4 E3 ubiquitin ligase to enable macrophage infection. PLoS Pathog. 4, e1000059 (2008).

    Article  Google Scholar 

  27. Accola, M. A., Bukovsky, A. A., Jones, M. S. & Göttlinger, H. G. A conserved dileucine-containing motif in p6gag governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIVmac and SIVagm. J. Virol. 73, 9992–9999 (1999).

    Article  CAS  Google Scholar 

  28. Kondo, N. et al. Structure of dNTP-inducible dNTP triphosphohydrolase: insight into broad specificity for dNTPs and triphosphohydrolase-type hydrolysis. Acta Crystallogr. D Biol. Crystallogr. 63, 230–239 (2007).

    Article  CAS  Google Scholar 

  29. Kondo, N., Kuramitsu, S. & Masui, R. Biochemical characterization of TT 1383 from Thermus thermophilus identifies a novel dNTP triphosphohydrolase activity stimulated by dATP and dTTP. J. Biochem. 136, 221–231 (2004).

    Article  CAS  Google Scholar 

  30. Mega, R., Kondo, N., Nakagawa, N., Kuramitsu, S. & Masui, R. Two dNTP triphosphohydrolases from Pseudomonas aeruginosa possess diverse substrate specificities. FEBS J. 276, 3211–3221 (2009).

    Article  CAS  Google Scholar 

  31. Kornberg, S. R., Lehman, I. R., Bessman, M. J., Simms, E. S. & Kornberg, A. Enzymatic cleavage of deoxyguanosine triphosphate to deoxyguanosine and tripolyphosphate. J. Biol. Chem. 233, 159–162 (1958).

    Article  CAS  Google Scholar 

  32. Quirk, S. & Bessman, M. J. dGTP triphosphohydrolase, a unique enzyme confined to members of the family Enterobacteriaceae. J. Bacteriol. 173, 6665–6669 (1991).

    Article  CAS  Google Scholar 

  33. Seto, D., Bhatnagar, S. K. & Bessman, M. J. The purification and properties of deoxyguanosine triphosphate triphosphohydrolase from Escherichia coli. J. Biol. Chem. 263, 1494–1499 (1988).

    Article  CAS  Google Scholar 

  34. Huber, H. E., Beauchamp, B. B. & Richardson, C. C. Escherichia coli dGTP triphosphohydrolase is inhibited by gene 1.2 protein of bacteriophage T7. J. Biol. Chem. 263, 13549–13556 (1988).

    Article  CAS  Google Scholar 

  35. Nakai, H. & Richardson, C. C. The gene 1.2 protein of bacteriophage T7 interacts with the Escherichia coli dGTP triphosphohydrolase to form a GTP-binding protein. J. Biol. Chem. 265, 4411–4419 (1990).

    Article  CAS  Google Scholar 

  36. Mlcochova, P., Caswell, S. J., Taylor, I. A., Towers, G. J. & Gupta, R. K. DNA damage induced by topoisomerase inhibitors activates SAMHD1 and blocks HIV-1 infection of macrophages. EMBO J. 37, 50–62 (2018).

    Article  CAS  Google Scholar 

  37. Clifford, R. et al. SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood 123, 1021–1031 (2014).

    Article  CAS  Google Scholar 

  38. Daddacha, W. et al. SAMHD1 promotes DNA end resection to facilitate DNA repair by homologous recombination. Cell Rep. 20, 1921–1935 (2017).

    Article  CAS  Google Scholar 

  39. Singh, D. et al. Structure of Escherichia coli dGTP triphosphohydrolase. J. Biol. Chem. 290, 10418–10429 (2015).

    Article  CAS  Google Scholar 

  40. Bester, A. C. et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145, 435–446 (2011).

    Article  CAS  Google Scholar 

  41. Niida, H., Shimada, M., Murakami, H. & Nakanishi, M. Mechanisms of dNTP supply that play an essential role in maintaining genome integrity in eukaryotic cells. Cancer Sci. 101, 2505–2509 (2010).

    Article  CAS  Google Scholar 

  42. Hsueh, B. Y., Ferrell, M. J., Sanath-Kumar, R., Bedore, A. M. & Waters, C. M. Replication cycle timing determines phage sensitivity to a cytidine deaminase toxin/antitoxin bacterial defense system. PLoS Pathog. 19, e1011195 (2023).

    Article  CAS  Google Scholar 

  43. Rousset, F. et al. A conserved family of immune effectors cleaves cellular ATP upon viral infection. Cell 186, 3619–3631.e13 (2023). Reports the discovery of ATP depletion as an antiviral mechanism that is conserved in bacteria and animals.

    Article  CAS  Google Scholar 

  44. Young, R. Bacteriophage lysis: mechanism and regulation. Microbiol. Rev. 56, 430–481 (1992).

    Article  CAS  Google Scholar 

  45. Pugmire, M. J. & Ealick, S. E. Structural analyses reveal two distinct families of nucleoside phosphorylases. Biochem. J. 361, 1–25 (2001).

    Google Scholar 

  46. Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020).

    Article  CAS  Google Scholar 

  47. Duncan-Lowey, B. et al. Cryo-EM structure of the RADAR supramolecular anti-phage defense complex. Cell 186, 987–998.e15 (2023).

    Article  CAS  Google Scholar 

  48. Gao, Y. et al. Molecular basis of RADAR anti-phage supramolecular assemblies. Cell 186, 999–1012.e20 (2023).

    Article  CAS  Google Scholar 

  49. Baca, C. F. et al. The CRISPR-associated adenosine deaminase Cad1 converts ATP to ITP to provide antiviral immunity. Cell 187, 7183–7195.e24 (2024).

    Article  CAS  Google Scholar 

  50. Stella, G. & Marraffini, L. Type III CRISPR-Cas: beyond the Cas10 effector complex. Trends Biochem. Sci. 49, 28–37 (2024).

    Article  CAS  Google Scholar 

  51. Kazlauskiene, M., Kostiuk, G., Venclovas, Č., Tamulaitis, G. & Siksnys, V. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357, 605–609 (2017).

    Article  CAS  Google Scholar 

  52. Niewoehner, O. et al. Type III CRISPR–Cas systems produce cyclic oligoadenylate second messengers. Nature 548, 543–548 (2017). Together with Kazlauskiene et al. (2017), reports the discovery of nucleotide signalling by type III CRISPR–Cas.

    Article  CAS  Google Scholar 

  53. Bradford, K. L., Moretti, F. A., Carbonaro-Sarracino, D. A., Gaspar, H. B. & Kohn, D. B. Adenosine deaminase (ADA)-deficient severe combined immune deficiency (SCID): molecular pathogenesis and clinical manifestations. J. Clin. Immunol. 37, 626–637 (2017).

    Article  CAS  Google Scholar 

  54. Sauer, A. V., Brigida, I., Carriglio, N. & Aiuti, A. Autoimmune dysregulation and purine metabolism in adenosine deaminase deficiency. Front. Immunol. 3, 265 (2012).

    Article  Google Scholar 

  55. Signa, S. et al. Adenosine deaminase 2 deficiency (DADA2): a crosstalk between innate and adaptive immunity. Front. Immunol. 13, 935957 (2022).

    Article  CAS  Google Scholar 

  56. Hamilton, C. E., Papavasiliou, F. N. & Rosenberg, B. R. Diverse functions for DNA and RNA editing in the immune system. RNA Biol. 7, 220–228 (2010).

    Article  CAS  Google Scholar 

  57. Zapata-Pérez, R., Wanders, R. J. A., van Karnebeek, C. D. M. & Houtkooper, R. H. NAD+ homeostasis in human health and disease. EMBO Mol. Med. 13, e13943 (2021).

    Article  Google Scholar 

  58. Erhardt, H. et al. Organization of the Escherichia coli aerobic enzyme complexes of oxidative phosphorylation in dynamic domains within the cytoplasmic membrane. MicrobiologyOpen 3, 316–326 (2014).

    Article  CAS  Google Scholar 

  59. Rodionova, I. A. et al. Metabolic and bactericidal effects of targeted suppression of NadD and NadE enzymes in mycobacteria. mBio 5, e00747-13 (2014).

    Article  Google Scholar 

  60. Garb, J. et al. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD+ depletion. Nat. Microbiol. 7, 1849–1856 (2022). Reports the discovery of SIR2-mediated NAD+ depletion as a defence principle in bacteria.

    Article  CAS  Google Scholar 

  61. Ofir, G. et al. Antiviral activity of bacterial TIR domains via immune signalling molecules. Nature 600, 116–120 (2021). Reports the discovery that bacterial TIR domain-containing proteins produce immune signalling molecules.

    Article  CAS  Google Scholar 

  62. Morehouse, B. R. et al. STING cyclic dinucleotide sensing originated in bacteria. Nature 586, 429–433 (2020).

    Article  CAS  Google Scholar 

  63. Hogrel, G. et al. Cyclic nucleotide-induced helical structure activates a TIR immune effector. Nature 608, 808–812 (2022).

    Article  CAS  Google Scholar 

  64. Zaremba, M. et al. Short prokaryotic Argonautes provide defence against incoming mobile genetic elements through NAD+ depletion. Nat. Microbiol. 7, 1857–1869 (2022).

    Article  CAS  Google Scholar 

  65. Koopal, B. et al. Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA. Cell 185, 1471–1486.e19 (2022).

    Article  CAS  Google Scholar 

  66. Tal, N. et al. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 184, 5728–5739.e16 (2021). Reports the discovery of cCMP and cUMP as immune signalling molecules in the Pycsar immune system.

    Article  CAS  Google Scholar 

  67. Millman, A., Melamed, S., Amitai, G. & Sorek, R. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat. Microbiol. 5, 1608–1615 (2020).

    Article  CAS  Google Scholar 

  68. Gao, L. A. et al. Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science 377, eabm4096 (2022).

    Article  CAS  Google Scholar 

  69. Makarova, K. S., Wolf, Y. I., van der Oost, J. & Koonin, E. V. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol. Direct 4, 29 (2009).

    Article  Google Scholar 

  70. Millman, A. et al. Bacterial retrons function in anti-phage defense. Cell 183, 1551–1561.e12 (2020).

    Article  CAS  Google Scholar 

  71. Carabias, A. et al. Retron-Eco1 assembles NAD+-hydrolyzing filaments that provide immunity against bacteriophages. Mol. Cell 84, 2185–2202.e12 (2024).

    Article  CAS  Google Scholar 

  72. Osterman, I. et al. Phages reconstitute NAD+ to counter bacterial immunity. Nature 634, 1160–1167 (2024).

    Article  CAS  Google Scholar 

  73. Zhang, H. et al. Structural insights into activation mechanisms on NADase of the bacterial DSR2 anti-phage defense system. Sci. Adv. 10, eadn5691 (2024).

    Article  CAS  Google Scholar 

  74. Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).

    Article  CAS  Google Scholar 

  75. Conforti, L., Gilley, J. & Coleman, M. P. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat. Rev. Neurosci. 15, 394–409 (2014).

    Article  CAS  Google Scholar 

  76. Essuman, K. et al. The SARM1 Toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron 93, 1334–1343.e5 (2017).

    Article  CAS  Google Scholar 

  77. Gerdts, J., Brace, E. J., Sasaki, Y., DiAntonio, A. & Milbrandt, J. SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science 348, 453–457 (2015).

    Article  CAS  Google Scholar 

  78. Couillault, C. et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat. Immunol. 5, 488–494 (2004).

    Article  CAS  Google Scholar 

  79. Liberati, N. T. et al. Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc. Natl Acad. Sci. USA 101, 6593–6598 (2004).

    Article  CAS  Google Scholar 

  80. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  Google Scholar 

  81. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013). Reports the discovery of human cGAMP.

    Article  CAS  Google Scholar 

  82. Zhang, X. et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51, 226–235 (2013).

    Article  CAS  Google Scholar 

  83. Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).

    Article  CAS  Google Scholar 

  84. Diner, E. J. et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 3, 1355–1361 (2013).

    Article  CAS  Google Scholar 

  85. Gao, P. et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153, 1094–1107 (2013).

    Article  CAS  Google Scholar 

  86. Gao, P. et al. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154, 748–762 (2013).

    Article  CAS  Google Scholar 

  87. Ablasser, A. & Chen, Z. J. cGAS in action: expanding roles in immunity and inflammation. Science 363, eaat8657 (2019).

    Article  CAS  Google Scholar 

  88. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    Article  CAS  Google Scholar 

  89. Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530–534 (2013).

    Article  CAS  Google Scholar 

  90. Lahey, L. J. et al. LRRC8A:C/E heteromeric channels are ubiquitous transporters of cGAMP. Mol. Cell 80, 578–591.e5 (2020).

    Article  CAS  Google Scholar 

  91. Luteijn, R. D. et al. SLC19A1 transports immunoreactive cyclic dinucleotides. Nature 573, 434–438 (2019).

    Article  CAS  Google Scholar 

  92. Ritchie, C., Cordova, A. F., Hess, G. T., Bassik, M. C. & Li, L. SLC19A1 is an importer of the immunotransmitter cGAMP. Mol. Cell 75, 372–381.e5 (2019).

    Article  CAS  Google Scholar 

  93. Slavik, K. M. et al. cGAS-like receptors sense RNA and control 3′2′-cGAMP signalling in Drosophila. Nature 597, 109–113 (2021).

    Article  CAS  Google Scholar 

  94. Holleufer, A. et al. Two cGAS-like receptors induce antiviral immunity in Drosophila. Nature 597, 114–118 (2021).

    Article  CAS  Google Scholar 

  95. Li, Y. et al. cGLRs are a diverse family of pattern recognition receptors in innate immunity. Cell 186, 3261–3276.e20 (2023).

    Article  CAS  Google Scholar 

  96. Kranzusch, P. J. et al. Ancient origin of cGAS-STING reveals mechanism of universal 2′,3′ cGAMP signaling. Mol. Cell 59, 891–903 (2015).

    Article  CAS  Google Scholar 

  97. Cai, H. et al. The virus-induced cyclic dinucleotide 2′3′-c-di-GMP mediates STING-dependent antiviral immunity in Drosophila. Immunity 56, 1991–2005.e9 (2023).

    Article  CAS  Google Scholar 

  98. Cohen, D. et al. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019). Reports the discovery of CBASS immunity in bacteria.

    Article  CAS  Google Scholar 

  99. Whiteley, A. T. et al. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567, 194–199 (2019). Reports the discovery of cGAS-like proteins in bacteria that produce cyclic oligonucleotides.

    Article  CAS  Google Scholar 

  100. Davies, B. W., Bogard, R. W., Young, T. S. & Mekalanos, J. J. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149, 358–370 (2012).

    Article  CAS  Google Scholar 

  101. Kranzusch, P. J., Lee, A. S.-Y., Berger, J. M. & Doudna, J. A. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 3, 1362–1368 (2013).

    Article  CAS  Google Scholar 

  102. Choudhary, D. K. et al. An archaeal CBASS system eliminates viruses without killing the host cells. Preprint at bioRxiv https://doi.org/10.1101/2024.09.12.612678 (2024).

  103. Duncan-Lowey, B., McNamara-Bordewick, N. K., Tal, N., Sorek, R. & Kranzusch, P. J. Effector-mediated membrane disruption controls cell death in CBASS antiphage defense. Mol. Cell 81, 5039–5051.e5 (2021).

    Article  CAS  Google Scholar 

  104. Lau, R. K. et al. Structure and mechanism of a cyclic trinucleotide-activated bacterial endonuclease mediating bacteriophage immunity. Mol. Cell 77, 723–733.e6 (2020).

    Article  CAS  Google Scholar 

  105. Lopatina, A., Tal, N. & Sorek, R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 7, 371–384 (2020).

    Article  CAS  Google Scholar 

  106. Lowey, B. et al. CBASS immunity uses CARF-related effectors to sense 3′-5′- and 2′-5′-linked cyclic oligonucleotide signals and protect bacteria from phage infection. Cell 182, 38–49.e17 (2020).

    Article  CAS  Google Scholar 

  107. Severin, G. B. et al. Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae. Proc. Natl Acad. Sci. USA 115, E6048–E6055 (2018).

    Article  CAS  Google Scholar 

  108. Ye, Q. et al. HORMA domain proteins and a Trip13-like ATPase regulate bacterial cGAS-like enzymes to mediate bacteriophage immunity. Mol. Cell 77, 709–722.e7 (2020).

    Article  CAS  Google Scholar 

  109. Tesson, F. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 13, 2561 (2022).

    Article  CAS  Google Scholar 

  110. Kranzusch, P. J. et al. Structure-guided reprogramming of human cGAS dinucleotide linkage specificity. Cell 158, 1011–1021 (2014).

    Article  CAS  Google Scholar 

  111. Fatma, S., Chakravarti, A., Zeng, X. & Huang, R. H. Molecular mechanisms of the CdnG-Cap5 antiphage defense system employing 3′,2′-cGAMP as the second messenger. Nat. Commun. 12, 6381 (2021).

    Article  CAS  Google Scholar 

  112. Tak, U., Walth, P. & Whiteley, A. T. Bacterial cGAS-like enzymes produce 2′,3′-cGAMP to activate an ion channel that restricts phage replication. Preprint at bioRxiv https://doi.org/10.1101/2023.07.24.550367 (2023).

  113. Makarova, K. S. et al. Evolutionary and functional classification of the CARF domain superfamily, key sensors in prokaryotic antivirus defense. Nucleic Acids Res. 48, 8828–8847 (2020).

    Article  CAS  Google Scholar 

  114. Iyer, L. M., Burroughs, A. M. & Aravind, L. The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like β-grasp domains. Genome Biol. 7, R60 (2006).

    Article  Google Scholar 

  115. Jenson, J. M., Li, T., Du, F., Ea, C.-K. & Chen, Z. J. Ubiquitin-like conjugation by bacterial cGAS enhances anti-phage defence. Nature 616, 326–331 (2023).

    Article  CAS  Google Scholar 

  116. Ledvina, H. E. et al. An E1-E2 fusion protein primes antiviral immune signaling in bacteria. Nature 616, 319–325 (2023).

    Article  CAS  Google Scholar 

  117. Krüger, L. et al. Reversible conjugation of a CBASS nucleotide cyclase regulates bacterial immune response to phage infection. Nat. Microbiol. 9, 1579–1592 (2024).

    Article  Google Scholar 

  118. Yan, Y. et al. Phage defence system CBASS is regulated by a prokaryotic E2 enzyme that imitates the ubiquitin pathway. Nat. Microbiol. 9, 1566–1578 (2024).

    Article  CAS  Google Scholar 

  119. Huiting, E. et al. Bacteriophages inhibit and evade cGAS-like immune function in bacteria. Cell 186, 864–876.e21 (2023).

    Article  CAS  Google Scholar 

  120. Richmond-Buccola, D. et al. A large-scale type I CBASS antiphage screen identifies the phage prohead protease as a key determinant of immune activation and evasion. Cell Host Microbe 32, 1074–1088.e5 (2024).

    Article  CAS  Google Scholar 

  121. Banh, D. V. et al. Bacterial cGAS senses a viral RNA to initiate immunity. Nature 623, 1001–1008 (2023).

    Article  CAS  Google Scholar 

  122. Hobbs, S. J. & Kranzusch, P. J. Nucleotide immune signaling in CBASS, Pycsar, Thoeris, and CRISPR antiphage defense. Annu. Rev. Microbiol. 78, 255–276 (2024).

    Article  CAS  Google Scholar 

  123. Severin, G. B. et al. Activation of a Vibrio cholerae CBASS anti-phage system by quorum sensing and folate depletion. mBio 14, e0087523 (2023).

    Article  Google Scholar 

  124. Zhu, D. et al. Structural biochemistry of a Vibrio cholerae dinucleotide cyclase reveals cyclase activity regulation by folates. Mol. Cell 55, 931–937 (2014).

    Article  CAS  Google Scholar 

  125. Donovan, J., Dufner, M. & Korennykh, A. Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1. Proc. Natl Acad. Sci. USA 110, 1652–1657 (2013).

    Article  CAS  Google Scholar 

  126. Hovanessian, A. G., Brown, R. E. & Kerr, I. M. Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells. Nature 268, 537–540 (1977).

    Article  CAS  Google Scholar 

  127. Roberts, W. K., Hovanessian, A., Brown, R. E., Clemens, M. J. & Kerr, I. M. Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis. Nature 264, 477–480 (1976).

    Article  CAS  Google Scholar 

  128. Kerr, I. M. & Brown, R. E. pppA2′p5′A2′p5′A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc. Natl Acad. Sci. USA 75, 256–260 (1978).

    Article  CAS  Google Scholar 

  129. Baglioni, C., Minks, M. A. & Maroney, P. A. Interferon action may be mediated by activation of a nuclease by pppA2′p5′A2′p5′A. Nature 273, 684–687 (1978).

    Article  CAS  Google Scholar 

  130. Clemens, M. J. & Williams, B. R. G. Inhibition of cell-free protein synthesis by pppA2′ p5′ A2′ p5′ A: a novel oligonucleotide synthesized by interferon-treated L cell extracts. Cell 13, 565–572 (1978).

    Article  CAS  Google Scholar 

  131. Dong, B. & Silverman, R. H. A bipartite model of 2-5A-dependent RNase L. J. Biol. Chem. 272, 22236–22242 (1997).

    Article  CAS  Google Scholar 

  132. Hovanessian, A. G., Wood, J., Meurs, E. & Montagnier, L. Increased nuclease activity in cells treated with pppA2′p5′A2′p5′ A. Proc. Natl Acad. Sci. USA 76, 3261–3265 (1979).

    Article  CAS  Google Scholar 

  133. Zhou, A., Hassel, B. A. & Silverman, R. H. Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell 72, 753–765 (1993).

    Article  CAS  Google Scholar 

  134. Castelli, J. C. et al. The role of 2′-5′ oligoadenylate-activated ribonuclease L in apoptosis. Cell Death Differ. 5, 313–320 (1998).

    Article  CAS  Google Scholar 

  135. Malathi, K., Dong, B., Gale, M. & Silverman, R. H. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448, 816–819 (2007).

    Article  CAS  Google Scholar 

  136. Zhou, A. et al. Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO J. 16, 6355–6363 (1997).

    Article  CAS  Google Scholar 

  137. Huai, W. et al. OAS cross-activates RNase L intercellularly through cell-to-cell transfer of 2-5A to spread innate immunity. Immunity 58, 797–810.e6 (2025).

    Article  CAS  Google Scholar 

  138. Hornung, V., Hartmann, R., Ablasser, A. & Hopfner, K.-P. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat. Rev. Immunol. 14, 521–528 (2014).

    Article  CAS  Google Scholar 

  139. Kolesnik, M. V., Fedorova, I., Karneyeva, K. A., Artamonova, D. N. & Severinov, K. V. Type III CRISPR-Cas systems: deciphering the most complex prokaryotic immune system. Biochem. Mosc. 86, 1301–1314 (2021).

    Article  CAS  Google Scholar 

  140. Kazlauskiene, M., Tamulaitis, G., Kostiuk, G., Venclovas, Č. & Siksnys, V. Spatiotemporal control of type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition. Mol. Cell 62, 295–306 (2016).

    Article  CAS  Google Scholar 

  141. Samai, P. et al. Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 161, 1164–1174 (2015).

    Article  CAS  Google Scholar 

  142. Hoikkala, V., Graham, S. & White, M. F. Bioinformatic analysis of type III CRISPR systems reveals key properties and new effector families. Nucleic Acids Res. 52, 7129–7141 (2024).

    Article  Google Scholar 

  143. Han, W., Pan, S., López-Méndez, B., Montoya, G. & She, Q. Allosteric regulation of Csx1, a type IIIB-associated CARF domain ribonuclease by RNAs carrying a tetraadenylate tail. Nucleic Acids Res. 45, 10740–10750 (2017).

    Article  CAS  Google Scholar 

  144. Jia, N., Jones, R., Yang, G., Ouerfelli, O. & Patel, D. J. CRISPR-Cas III-A Csm6 CARF domain is a ring nuclease triggering stepwise cA4 cleavage with ApA>p formation terminating RNase activity. Mol. Cell 75, 944–956.e6 (2019).

    Article  CAS  Google Scholar 

  145. Niewoehner, O. & Jinek, M. Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6. RNA 22, 318–329 (2016).

    Article  CAS  Google Scholar 

  146. Grüschow, S., Adamson, C. S. & White, M. F. Specificity and sensitivity of an RNA targeting type III CRISPR complex coupled with a NucC endonuclease effector. Nucleic Acids Res. 49, 13122–13134 (2021).

    Article  Google Scholar 

  147. Mayo-Muñoz, D. et al. Type III CRISPR-Cas provides resistance against nucleus-forming jumbo phages via abortive infection. Mol. Cell 82, 4471–4486.e9 (2022).

    Article  Google Scholar 

  148. McMahon, S. A. et al. Structure and mechanism of a type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate. Nat. Commun. 11, 500 (2020).

    Article  CAS  Google Scholar 

  149. Rostøl, J. T. et al. The Card1 nuclease provides defence during type III CRISPR immunity. Nature 590, 624–629 (2021).

    Article  Google Scholar 

  150. Zhu, W. et al. The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence. Nucleic Acids Res. 49, 2777–2789 (2021).

    Article  CAS  Google Scholar 

  151. Steens, J. A. et al. Type III-B CRISPR-Cas cascade of proteolytic cleavages. Science 383, 512–519 (2024).

    Article  Google Scholar 

  152. Chi, H. et al. Antiviral type III CRISPR signalling via conjugation of ATP and SAM. Nature 622, 826–833 (2023).

    Article  CAS  Google Scholar 

  153. Grüschow, S. et al. CRISPR antiphage defence mediated by the cyclic nucleotide-binding membrane protein Csx23. Nucleic Acids Res. 52, 2761–2775 (2024).

    Article  Google Scholar 

  154. Mogila, I. et al. Ribosomal stalk-captured CARF-RelE ribonuclease inhibits translation following CRISPR signaling. Science 382, 1036–1041 (2023).

    Article  CAS  Google Scholar 

  155. Rouillon, C. et al. Antiviral signalling by a cyclic nucleotide activated CRISPR protease. Nature 614, 168–174 (2023).

    Article  CAS  Google Scholar 

  156. Athukoralage, J. S. et al. The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling. eLife 9, e55852 (2020).

    Article  Google Scholar 

  157. Nasef, M. et al. Regulation of cyclic oligoadenylate synthesis by the Staphylococcus epidermidis Cas10-Csm complex. RNA 25, 948–962 (2019).

    Article  CAS  Google Scholar 

  158. Rouillon, C., Athukoralage, J. S., Graham, S., Grüschow, S. & White, M. F. Control of cyclic oligoadenylate synthesis in a type III CRISPR system. eLife 7, e36734 (2018).

    Article  Google Scholar 

  159. Athukoralage, J. S., Graham, S., Grüschow, S., Rouillon, C. & White, M. F. A type III CRISPR ancillary ribonuclease degrades its cyclic oligoadenylate activator. J. Mol. Biol. 431, 2894–2899 (2019).

    Article  CAS  Google Scholar 

  160. Binder, S. C. et al. The SAVED domain of the type III CRISPR protease CalpL is a ring nuclease. Nucleic Acids Res. 52, 10520–10532 (2024).

    Article  CAS  Google Scholar 

  161. Garcia-Doval, C. et al. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6. Nat. Commun. 11, 1596 (2020).

    Article  CAS  Google Scholar 

  162. Smalakyte, D. et al. Type III-A CRISPR-associated protein Csm6 degrades cyclic hexa-adenylate activator using both CARF and HEPN domains. Nucleic Acids Res. 48, 9204–9217 (2020).

    Article  CAS  Google Scholar 

  163. Athukoralage, J. S., Rouillon, C., Graham, S., Grüschow, S. & White, M. F. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Nature 562, 277–280 (2018). Reports the discovery of ring nucleases in type III CRISPR–Cas.

    Article  CAS  Google Scholar 

  164. Athukoralage, J. S. et al. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. eLife 9, e57627 (2020).

    Article  CAS  Google Scholar 

  165. Samolygo, A., Athukoralage, J. S., Graham, S. & White, M. F. Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence. Nucleic Acids Res. 48, 6149–6156 (2020).

    Article  CAS  Google Scholar 

  166. Hoikkala, V., Chi, H., Grüschow, S., Graham, S. & White, M. F. Diversity and abundance of ring nucleases in type III CRISPR-Cas loci. Preprint at bioRxiv https://doi.org/10.1101/2024.09.24.614671 (2024).

  167. Athukoralage, J. S. & White, M. F. Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence. RNA 27, 855–867 (2021).

    Article  CAS  Google Scholar 

  168. Rostøl, J. T. & Marraffini, L. A. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR–Cas immunity. Nat. Microbiol. 4, 656–662 (2019).

    Article  Google Scholar 

  169. Hou, M.-H., Chen, C.-J., Yang, C.-S., Wang, Y.-C. & Chen, Y. Structural and functional characterization of cyclic pyrimidine-regulated anti-phage system. Nat. Commun. 15, 5634 (2024).

    Article  CAS  Google Scholar 

  170. Gomelsky, M. & Galperin, M. Y. Bacterial second messengers, cGMP and c‐di‐GMP, in a quest for regulatory dominance. EMBO J. 32, 2421–2423 (2013).

    Article  CAS  Google Scholar 

  171. Chan, P. J. The effect of cyclic cytidine 3′,5′-monophosphate (cCMP) on the in vitro development, hatching and attachment of the mouse blastocyst. Experientia 43, 929–930 (1987).

    Article  CAS  Google Scholar 

  172. Chan, P. J., Henig, I. & Tredway, D. R. Regulation of mouse trophoblast giant cell nucleus development in hatched mouse blastocysts by cyclic cytidine 3′,5′-monophosphate (cCMP). Experientia 44, 774–775 (1988).

    Article  CAS  Google Scholar 

  173. Beckert, U. et al. cNMP-AMs mimic and dissect bacterial nucleotidyl cyclase toxin effects. Biochem. Biophys. Res. Commun. 451, 497–502 (2014).

    Article  CAS  Google Scholar 

  174. Kawasaki, T. & Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 5, 461 (2014).

    Article  Google Scholar 

  175. Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

    Article  Google Scholar 

  176. Essuman, K. et al. TIR domain proteins are an ancient family of NAD+-consuming enzymes. Curr. Biol. 28, 421–430.e4 (2018). Reports the discovery of TIR domain-containing proteins as NADases in plants.

    Article  CAS  Google Scholar 

  177. Horsefield, S. et al. NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365, 793–799 (2019).

    Article  CAS  Google Scholar 

  178. Wan, L. et al. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365, 799–803 (2019).

    Article  CAS  Google Scholar 

  179. Essuman, K., Milbrandt, J., Dangl, J. L. & Nishimura, M. T. Shared TIR enzymatic functions regulate cell death and immunity across the tree of life. Science 377, eabo0001 (2022).

    Article  CAS  Google Scholar 

  180. Li, S., Manik, M. K., Shi, Y., Kobe, B. & Ve, T. Toll/interleukin-1 receptor domains in bacterial and plant immunity. Curr. Opin. Microbiol. 74, 102316 (2023).

    Article  CAS  Google Scholar 

  181. Leavitt, A. et al. Viruses inhibit TIR gcADPR signalling to overcome bacterial defence. Nature 611, 326–331 (2022). Reports the discovery of 2′cADPR and 3′cADPR as TIR-derived immune signalling molecules in plants and bacteria.

    Article  CAS  Google Scholar 

  182. Rousset, F. et al. TIR signaling activates caspase-like immunity in bacteria. Science 387, 510–516 (2025).

    Article  CAS  Google Scholar 

  183. Sabonis, D. et al. TIR domains produce histidine-ADPR conjugates as immune signaling molecules in bacteria. Nature 642, 467–473 (2025).

    Article  CAS  Google Scholar 

  184. Roberts, C. G., Fishman, C. B., Banh, D. V. & Marraffini, L. A. A bacterial TIR-based immune system senses viral capsids to initiate defense. Preprint at bioRxiv https://doi.org/10.1101/2024.07.29.605636 (2024).

  185. Bayless, A. M. et al. Plant and prokaryotic TIR domains generate distinct cyclic ADPR NADase products. Sci. Adv. 9, eade8487 (2023).

    Article  CAS  Google Scholar 

  186. Manik, M. K. et al. Cyclic ADP ribose isomers: production, chemical structures, and immune signaling. Science 377, eadc8969 (2022).

    Article  CAS  Google Scholar 

  187. Wu, Y. et al. A canonical protein complex controls immune homeostasis and multipathogen resistance. Science 386, 1405–1412 (2024).

    Article  CAS  Google Scholar 

  188. Yu, H. et al. Activation of a helper NLR by plant and bacterial TIR immune signaling. Science 386, 1413–1420 (2024).

    Article  CAS  Google Scholar 

  189. Huang, S. et al. Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity. Science 377, eabq3297 (2022).

    Article  CAS  Google Scholar 

  190. Wu, Z., Tian, L., Liu, X., Zhang, Y. & Li, X. TIR signal promotes interactions between lipase-like proteins and ADR1-L1 receptor and ADR1-L1 oligomerization. Plant Physiol. 187, 681–686 (2021).

    Article  CAS  Google Scholar 

  191. Jia, A. et al. TIR-catalyzed ADP-ribosylation reactions produce signaling molecules for plant immunity. Science 377, eabq8180 (2022).

    Article  CAS  Google Scholar 

  192. Huang, S. et al. Balanced plant helper NLR activation by a modified host protein complex. Nature 639, 447–455 (2025).

    Article  CAS  Google Scholar 

  193. Feehan, J. M. et al. Oligomerization of a plant helper NLR requires cell-surface and intracellular immune receptor activation. Proc. Natl Acad. Sci. USA 120, e2210406120 (2023).

    Article  CAS  Google Scholar 

  194. Sun, X. et al. Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity. Nat. Commun. 12, 3335 (2021).

    Article  CAS  Google Scholar 

  195. Jacob, P. et al. Plant “helper” immune receptors are Ca2+-permeable nonselective cation channels. Science 373, 420–425 (2021).

    Article  CAS  Google Scholar 

  196. Wang, Z. et al. Plasma membrane association and resistosome formation of plant helper immune receptors. Proc. Natl Acad. Sci. USA 120, e2222036120 (2023).

    Article  CAS  Google Scholar 

  197. Yu, D. et al. TIR domains of plant immune receptors are 2′,3′-cAMP/cGMP synthetases mediating cell death. Cell 185, 2370–2386.e18 (2022).

    Article  CAS  Google Scholar 

  198. Botella, M. A. et al. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell 10, 1847–1860 (1998).

    Article  CAS  Google Scholar 

  199. Ma, S. et al. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 370, eabe3069 (2020).

    Article  CAS  Google Scholar 

  200. Steinbrenner, A. D., Goritschnig, S. & Staskawicz, B. J. Recognition and activation domains contribute to allele-specific responses of an Arabidopsis NLR receptor to an oomycete effector protein. PLoS Pathog. 11, e1004665 (2015).

    Article  Google Scholar 

  201. Qi, T. et al. NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in Nicotiana benthamiana. Proc. Natl Acad. Sci. USA 115, E10979–E10987 (2018).

    Article  CAS  Google Scholar 

  202. Schultink, A., Qi, T., Lee, A., Steinbrenner, A. D. & Staskawicz, B. Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1. Plant J. 92, 787–795 (2017).

    Article  CAS  Google Scholar 

  203. Martin, R. et al. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 370, eabd9993 (2020).

    Article  CAS  Google Scholar 

  204. Van de Weyer, A.-L. et al. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178, 1260–1272.e14 (2019).

    Article  Google Scholar 

  205. Shi, Y. et al. Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules. Mol. Cell 82, 1643–1659.e10 (2022).

    Article  CAS  Google Scholar 

  206. Garb, J. et al. The SARM1 TIR domain produces glycocyclic ADPR molecules as minor products. PLoS ONE 19, e0302251 (2024).

    Article  CAS  Google Scholar 

  207. Eaglesham, J. B., McCarty, K. L. & Kranzusch, P. J. Structures of diverse poxin cGAMP nucleases reveal a widespread role for cGAS-STING evasion in host–pathogen conflict. eLife 9, e59753 (2020).

    Article  CAS  Google Scholar 

  208. Eaglesham, J. B., Pan, Y., Kupper, T. S. & Kranzusch, P. J. Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS-STING signalling. Nature 566, 259–263 (2019).

    Article  CAS  Google Scholar 

  209. Hobbs, S. J. et al. Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity. Nature 605, 522–526 (2022).

    Article  CAS  Google Scholar 

  210. Hobbs, S. J., Nomburg, J., Doudna, J. A. & Kranzusch, P. J. Animal and bacterial viruses share conserved mechanisms of immune evasion. Cell 187, 5530–5539.e8 (2024).

    Article  CAS  Google Scholar 

  211. Nomburg, J. et al. Birth of protein folds and functions in the virome. Nature 633, 710–717 (2024).

    Article  CAS  Google Scholar 

  212. Comar, C. E. et al. Antagonism of dsRNA-induced innate immune pathways by NS4a and NS4b accessory proteins during MERS coronavirus infection. mBio 10, e00319 (2019).

    Article  CAS  Google Scholar 

  213. Goldstein, S. A. & Elde, N. C. Recurrent viral capture of cellular phosphodiesterases that antagonize OAS-RNase L. Proc. Natl Acad. Sci. USA 121, e2312691121 (2024).

    Article  CAS  Google Scholar 

  214. Song, Y. et al. Reverse genetics reveals a role of rotavirus VP3 phosphodiesterase activity in inhibiting RNase L signaling and contributing to intestinal viral replication in vivo. J. Virol. 94, e01952-19 (2020).

    Article  Google Scholar 

  215. Thornbrough, J. M. et al. Middle east respiratory syndrome coronavirus NS4b protein inhibits host RNase L activation. mBio 7, e00258 (2016).

    Article  CAS  Google Scholar 

  216. Zhang, R. et al. Homologous 2′,5′-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity. Proc. Natl Acad. Sci. USA 110, 13114–13119 (2013).

    Article  CAS  Google Scholar 

  217. Zhao, L. et al. Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe 11, 607–616 (2012).

    Article  CAS  Google Scholar 

  218. Athukoralage, J. S. et al. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 577, 572–575 (2020).

    Article  CAS  Google Scholar 

  219. Yirmiya, E. et al. Phages overcome bacterial immunity via diverse anti-defence proteins. Nature 625, 352–359 (2024).

    Article  CAS  Google Scholar 

  220. Li, D. et al. Single phage proteins sequester signals from TIR and cGAS-like enzymes. Nature 635, 719–727 (2024).

    Article  CAS  Google Scholar 

  221. Cao, X. et al. Phage anti-CBASS protein simultaneously sequesters cyclic trinucleotides and dinucleotides. Mol. Cell 84, 375–385.e7 (2024).

    Article  CAS  Google Scholar 

  222. Chang, R. B. et al. A widespread family of viral sponge proteins reveals specific inhibition of nucleotide signals in anti-phage defense. Preprint at bioRxiv https://doi.org/10.1101/2024.12.30.630793 (2024).

  223. Eaglesham, J. B. & Kranzusch, P. J. Conserved strategies for pathogen evasion of cGAS–STING immunity. Curr. Opin. Immunol. 66, 27–34 (2020).

    Article  CAS  Google Scholar 

  224. Wu, J. et al. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe 18, 333–344 (2015).

    Article  CAS  Google Scholar 

  225. Zhang, G. et al. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. Proc. Natl Acad. Sci. USA 113, E1034–E1043 (2016).

    CAS  Google Scholar 

  226. Aguirre, S. et al. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat. Microbiol. 2, 1–11 (2017).

    Article  Google Scholar 

  227. Aguirre, S. et al. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog. 8, e1002934 (2012).

    Article  Google Scholar 

  228. Kim, J.-E., Kim, Y.-E., Stinski, M. F., Ahn, J.-H. & Song, Y.-J. Human cytomegalovirus IE2 86 kDa protein induces STING degradation and inhibits cGAMP-mediated IFN-β induction. Front. Microbiol. 8, 1854 (2017).

    Article  Google Scholar 

  229. Yu, C.-Y. et al. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog. 8, e1002780 (2012).

    Article  CAS  Google Scholar 

  230. Taguchi, T. et al. Hepatitis C virus NS5A protein interacts with 2′,5′-oligoadenylate synthetase and inhibits antiviral activity of IFN in an IFN sensitivity-determining region-independent manner. J. Gen. Virol. 85, 959–969 (2004).

    Article  CAS  Google Scholar 

  231. Drappier, M. et al. A novel mechanism of RNase L inhibition: Theiler’s virus L* protein prevents 2-5A from binding to RNase L. PLoS Pathog. 14, e1006989 (2018).

    Article  Google Scholar 

  232. Sorgeloos, F., Jha, B. K., Silverman, R. H. & Michiels, T. Evasion of antiviral innate immunity by Theiler’s virus L* protein through direct inhibition of RNase L. PLoS Pathog. 9, e1003474 (2013).

    Article  CAS  Google Scholar 

  233. Han, J.-Q. et al. A phylogenetically conserved RNA structure in the poliovirus open reading frame inhibits the antiviral endoribonuclease RNase L. J. Virol. 81, 5561–5572 (2007).

    Article  CAS  Google Scholar 

  234. Townsend, H. L. et al. A viral RNA competitively inhibits the antiviral endoribonuclease domain of RNase L. RNA 14, 1026–1036 (2008).

    Article  CAS  Google Scholar 

  235. Drappier, M. & Michiels, T. Inhibition of the OAS/RNase L pathway by viruses. Curr. Opin. Virol. 15, 19–26 (2015).

    Article  CAS  Google Scholar 

  236. Yirmiya, E. et al. Structure-guided discovery of viral proteins that inhibit host immunity. Cell 188, 1681–1692.e17 (2025).

    Article  CAS  Google Scholar 

  237. Bhoobalan-Chitty, Y., Johansen, T. B., Di Cianni, N. & Peng, X. Inhibition of type III CRISPR-Cas immunity by an archaeal virus-encoded anti-CRISPR protein. Cell 179, 448–458.e11 (2019).

    Article  CAS  Google Scholar 

  238. Chou-Zheng, L. et al. AcrIIIA1 is a protein-RNA anti-CRISPR complex that targets core Cas and accessory nucleases. Nucleic Acids Res. 52, 13490–13514 (2024).

    Article  CAS  Google Scholar 

  239. Lin, J., Alfastsen, L., Bhoobalan-Chitty, Y. & Peng, X. Molecular basis for inhibition of type III-B CRISPR-Cas by an archaeal viral anti-CRISPR protein. Cell Host Microbe 31, 1837–1849.e5 (2023).

    Article  CAS  Google Scholar 

  240. Liu, J. et al. An archaeal virus-encoded anti-CRISPR protein inhibits type III-B immunity by inhibiting Cas RNP complex turnover. Nucleic Acids Res. 51, 11783–11796 (2023).

    Article  CAS  Google Scholar 

  241. Gizzi, A. S. et al. A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature 558, 610–614 (2018).

    Article  CAS  Google Scholar 

  242. Chin, K.-C. & Cresswell, P. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. Proc. Natl Acad. Sci. USA 98, 15125–15130 (2001).

    Article  CAS  Google Scholar 

  243. Rivera-Serrano, E. E. et al. Viperin reveals its true function. Annu. Rev. Virol. 7, 421–446 (2020).

    Article  CAS  Google Scholar 

  244. Bernheim, A. et al. Prokaryotic viperins produce diverse antiviral molecules. Nature 589, 120–124 (2021).

    Article  CAS  Google Scholar 

  245. Leão, P. et al. Asgard archaea defense systems and their roles in the origin of eukaryotic immunity. Nat. Commun. 15, 6386 (2024).

    Article  Google Scholar 

  246. Kamel, R., Aman, R. & Mahfouz, M. M. Viperin-like proteins interfere with RNA viruses in plants. Front. Plant Sci. 15, 1385169 (2024).

    Article  Google Scholar 

  247. Koonin, E. V., Dolja, V. V. & Krupovic, M. The logic of virus evolution. Cell Host Microbe 30, 917–929 (2022).

    Article  Google Scholar 

  248. Krupovic, M., Dolja, V. V. & Koonin, E. V. Origin of viruses: primordial replicators recruiting capsids from hosts. Nat. Rev. Microbiol. 17, 449–458 (2019).

    Article  CAS  Google Scholar 

  249. Burroughs, A. M., Zhang, D., Schäffer, D. E., Iyer, L. M. & Aravind, L. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res. 43, 10633–10654 (2015).

    Article  CAS  Google Scholar 

  250. Zeng, Z. et al. Base-modified nucleotides mediate immune signaling in bacteria. Science 388, eads6055 (2025).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Sorek laboratory, as well as T. Wein, for the constructive criticism of the manuscript. D.H. was supported, in part, by the Ministry of Absorption New Immigrant programme and by the Israeli Council for Higher Education (CHE) via the Weizmann Data Science Research Center. R.S. was supported, in part, by the European Research Council (grant ERC-AdG GA 101018520), the Israel Science Foundation (MAPATS grant 2720/22), the Deutsche Forschungsgemeinschaft (SPP 2330, grant 464312965), the Minerva Foundation with funding from the Federal German Ministry for Education and Research, the Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, a research grant from the Estate of Hermine Miller, the Institute for Environmental Sustainability (IES) and the Center for Immunotherapy at the Weizmann Institute of Science, and the Knell Family Center for Microbiology.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Rotem Sorek.

Ethics declarations

Competing interests

R.S. is a scientific cofounder and adviser of BiomX and Ecophage. D.H. declares no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Andrea Ablasser; Jane Parker, who co-reviewed with Federica Locci; Enzo Poirier; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochhauser, D., Sorek, R. Manipulation of the nucleotide pool in human, bacterial and plant immunity. Nat Rev Immunol (2025). https://doi.org/10.1038/s41577-025-01206-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-025-01206-w

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology