Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Immune control of brain physiology

Abstract

The peripheral immune system communicates with the brain through complex anatomical routes involving the skull, the brain borders, circumventricular organs and peripheral nerves. These immune–brain communication pathways were classically considered to be dormant under physiological conditions and active only in cases of infection or damage. Yet, peripheral immune cells and signals are key in brain development, function and maintenance. In this Perspective, we propose an alternative framework for understanding the mechanisms of immune–brain communication. During brain development and in homeostasis, these anatomical structures allow selected elements of the peripheral immune system to affect the brain directly or indirectly, within physiological limits. By contrast, in ageing and pathological settings, detrimental peripheral immune signals hijack the existing communication routes or alter their structure. We discuss why a diversity of communication channels is needed and how they work in relation to one another to maintain homeostasis of the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Blood–brain barrier as a site of direct blood–parenchyma communication.
Fig. 2: Peripheral immune signals at the choroid plexus may regulate the brain indirectly, by changing the composition of the cerebrospinal fluid.
Fig. 3: Meningeal anatomy allows bidirectional communication along the skull marrow–dura mater–cerebrospinal fluid–brain axis.
Fig. 4: Immune–brain communication in circumventricular organs allows the brain to sense immune signals in the blood both directly and indirectly.
Fig. 5: Immune–brain communication along peripheral nerves.

Similar content being viewed by others

References

  1. Ito, M. et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565, 246–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Yshii, L. et al. Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nat. Immunol. 23, 878–891 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pasciuto, E. et al. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell 182, 625–640.e624 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shen, Y. et al. CCR5 closes the temporal window for memory linking. Nature 606, 146–152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nautiyal, K. M., Ribeiro, A. C., Pfaff, D. W. & Silver, R. Brain mast cells link the immune system to anxiety-like behavior. Proc. Natl Acad. Sci. USA 105, 18053–18057 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaudenzio, N. et al. Different activation signals induce distinct mast cell degranulation strategies. J. Clin. Invest. 126, 3981–3998 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sankowski, R. et al. Multiomic spatial landscape of innate immune cells at human central nervous system borders. Nat. Med. 30, 186–198 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fernández-Castañeda, A. et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 185, 2452–2468 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wälchli, T. et al. Single-cell atlas of the human brain vasculature across development, adulthood and disease. Nature 632, 603–613 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wu, L. et al. Conditional knockout of IL-1R1 in endothelial cells attenuates seizures and neurodegeneration via inhibiting neuroinflammation mediated by Nrf2/HO-1/NLRP3 signaling in status epilepticus model. Mol. Neurobiol. 61, 4289–4303 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nehmé, A. & Edelman, J. Dexamethasone inhibits high glucose-, TNF-α-, and IL-1β-induced secretion of inflammatory and angiogenic mediators from retinal microvascular pericytes. Invest. Ophthalmol. Vis. Sci. 49, 2030–2038 (2008).

    Article  PubMed  Google Scholar 

  14. Persidsky, Y. et al. Dysfunction of brain pericytes in chronic neuroinflammation. J. Cereb. Blood Flow. Metab. 36, 794–807 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Leaf, I. A. et al. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J. Clin. Invest. 127, 321–334 (2017).

    Article  PubMed  Google Scholar 

  16. Duan, L. et al. PDGFRβ cells rapidly relay inflammatory signal from the circulatory system to neurons via chemokine CCL2. Neuron 100, 183–200.e188 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Ji, E. et al. The chemokine CCL2 promotes excitatory synaptic transmission in hippocampal neurons via GluA1 subunit trafficking. Neurosci. Bull. 40, 1649–1666 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo, H. et al. CCL2 potentiates inflammation pain and related anxiety-like behavior through NMDA signaling in anterior cingulate cortex. Mol. Neurobiol. 61, 4976–4991 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Dror, E. et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat. Immunol. 18, 283–292 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Leidmaa, E., Zimmer, A., Stein, V. & Gellner, A.-K. Acute high-fat high-sugar diet rapidly increases blood-brain barrier permeability in mice. Preprint at bioRxiv https://doi.org/10.1101/2024.04.14.589405 (2024).

  21. Gillespie, K. M. et al. The impact of free and added sugars on cognitive function: a systematic review and meta-analysis. Nutrients 16, 75 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fetsko, A. R., Sebo, D. J., Budzynski, L. B., Scharbarth, A. & Taylor, M. R. IL-1β disrupts the initiation of blood-brain barrier development by inhibiting endothelial Wnt/β-catenin signaling. iScience 27, 109651 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, X. et al. Cell-type-specific interleukin 1 receptor 1 signaling in the brain regulates distinct neuroimmune activities. Immunity 50, 317–333.e316 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Avital, A. et al. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus 13, 826–834 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Drieu, A. et al. Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611, 585–593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaplan, L., Chow, B. W. & Gu, C. Neuronal regulation of the blood–brain barrier and neurovascular coupling. Nat. Rev. Neurosci. 21, 416–432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Somasundaram, V. et al. Inducible nitric oxide synthase-derived extracellular nitric oxide flux regulates proinflammatory responses at the single cell level. Redox Biol. 28, 101354 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Haruwaka, K. et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat. Commun. 10, 5816 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Belenichev, I. et al. Modulating nitric oxide: implications for cytotoxicity and cytoprotection. Antioxidants 13, 504 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pfau, S. J. et al. Characteristics of blood–brain barrier heterogeneity between brain regions revealed by profiling vascular and perivascular cells. Nat. Neurosci. 27, 1892–1903 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghersi-Egea, J. F. et al. Molecular anatomy and functions of the choroidal blood–cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 135, 337–361 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Piehl, N. et al. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell 185, 5028–5039.e5013 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gate, D. et al. CD4+ T cells contribute to neurodegeneration in Lewy body dementia. Science 374, 868–874 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He, Y. et al. Interleukin-15 receptor is essential to facilitate GABA transmission and hippocampal-dependent memory. J. Neurosci. 30, 4725–4734 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e1022 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carloni, S. et al. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science 374, 439–448 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Shipley, F. B. et al. Tracking calcium dynamics and immune surveillance at the choroid plexus blood-cerebrospinal fluid interface. Neuron 108, 623–639.e610 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    Article  PubMed  Google Scholar 

  39. Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074.e3021 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Althubaity, N. et al. Choroid plexus enlargement is associated with neuroinflammation and reduction of blood brain barrier permeability in depression. Neuroimage Clin. 33, 102926 (2022).

    Article  PubMed  Google Scholar 

  41. Baruch, K. et al. CNS-specific immunity at the choroid plexus shifts toward destructive TH2 inflammation in brain aging. Proc. Natl Acad. Sci. USA 110, 2264–2269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kunis, G. et al. IFN-γ-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain 136, 3427–3440 (2013).

    Article  PubMed  Google Scholar 

  43. Kertser, A. et al. Corticosteroid signaling at the brain–immune interface impedes coping with severe psychological stress. Sci. Adv. 5, eaav4111 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shimada, A. & Hasegawa-Ishii, S. Increased cytokine expression in the choroid plexus stroma and epithelium in response to endotoxin-induced systemic inflammation in mice. Toxicol. Rep. 8, 520–528 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kolabas, Z. I. et al. Distinct molecular profiles of skull bone marrow in health and neurological disorders. Cell 186, 3706–3725.e3729 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e1027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eide, P. K. & Ringstad, G. Cerebrospinal fluid egress to human parasagittal dura and the impact of sleep deprivation. Brain Res. 1772, 147669 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Ringstad, G. & Eide, P. K. Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat. Commun. 11, 354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat. Neurosci. 22, 317–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 373, eabf9277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373, eabf7844 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, Y. et al. Early developing B cells undergo negative selection by central nervous system-specific antigens in the meninges. Immunity 54, 2784–2794.e2786 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Mazzitelli, J. A. et al. Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nat. Neurosci. 25, 555–560 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pulous, F. E. et al. Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nat. Neurosci. 25, 567–576 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, Y. et al. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. Nat. Immunol. 23, 1714–1725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Borrell, V. & Marín, O. Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nat. Neurosci. 9, 1284–1293 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Siegenthaler, J. A. & Pleasure, S. J. We have got you ‘covered’: how the meninges control brain development. Curr. Opin. Genet. Dev. 21, 249–255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Herz, J. et al. GABAergic neuronal IL-4R mediates T cell effect on memory. Neuron 109, 3609–3618.e3609 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Garofalo, S. et al. Natural killer cells and innate lymphoid cells 1 tune anxiety-like behavior and memory in mice via interferon-γ and acetylcholine. Nat. Commun. 14, 3103 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Filiano, A. J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alves de Lima, K. et al. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat. Immunol. 21, 1421–1429 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Ribeiro, M. et al. Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. 4, eaay5199 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brombacher, T. M. et al. IL-13-mediated regulation of learning and memory. J. Immunol. 198, 2681–2688 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Li, S. et al. Interleukin-13 and its receptor are synaptic proteins involved in plasticity and neuroprotection. Nat. Commun. 14, 200 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Smyth, L. C. D. et al. Identification of direct connections between the dura and the brain. Nature 627, 165–173 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Morita, S. et al. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell Tissue Res. 363, 497–511 (2016).

    Article  PubMed  Google Scholar 

  72. Knorr, C. et al. Macrophage-activating lipopeptide-2 (MALP-2) induces a localized inflammatory response in rats resulting in activation of brain sites implicated in fever. Brain Res. 1205, 36–46 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Wei, S. G. et al. Subfornical organ mediates sympathetic and hemodynamic responses to blood-borne proinflammatory cytokines. Hypertension 62, 118–125 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Ilanges, A. et al. Brainstem ADCYAP1+ neurons control multiple aspects of sickness behaviour. Nature 609, 761–771 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, Z. H. et al. Single-cell transcriptomic profiling of the hypothalamic median eminence during aging. J. Genet. Genomics 49, 523–536 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Takagi, S., Furube, E., Nakano, Y., Morita, M. & Miyata, S. Microglia are continuously activated in the circumventricular organs of mouse brain. J. Neuroimmunol. 331, 74–86 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Willis, C. L., Garwood, C. J. & Ray, D. E. A size selective vascular barrier in the rat area postrema formed by perivascular macrophages and the extracellular matrix. Neuroscience 150, 498–509 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Loeffler, C. et al. Immune surveillance of the normal human CNS takes place in dependence of the locoregional blood–brain barrier configuration and is mainly performed by CD3+/CD8+ lymphocytes. Neuropathology 31, 230–238 (2011).

    Article  PubMed  Google Scholar 

  79. Song, C. et al. Expansion of brain T cells in homeostatic conditions in lymphopenic Rag2−/− mice. Brain Behav. Immun. 57, 161–172 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Marvar, P. J. et al. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ. Res. 107, 263–270 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Murtazina, A. & Adameyko, I. The peripheral nervous system. Development 150, dev201164 (2023).

  83. Diogenes, A., Ferraz, C. C., Akopian, A. N., Henry, M. A. & Hargreaves, K. M. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J. Dent. Res. 90, 759–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Xu, Z. Z. et al. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat. Med. 21, 1326–1331 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zanos, T. P. et al. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proc. Natl Acad. Sci. USA 115, E4843–E4852 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jin, H., Li, M., Jeong, E., Castro-Martinez, F. & Zuker, C. S. A body–brain circuit that regulates body inflammatory responses. Nature 630, 695–703 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Needham, B. D. et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 602, 647–653 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Grabrucker, S. et al. Microbiota from Alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis. Brain 146, 4916–4934 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Liu, P. et al. Immunoregulatory role of the gut microbiota in inflammatory depression. Nat. Commun. 15, 3003 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cox, L. M. et al. γδ T cells suppress microbial metabolites that activate striatal neurons and induce repetitive/compulsive behavior in mice. Brain Behav. Immun. 117, 242–254 (2024).

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, X. et al. Brain control of humoral immune responses amenable to behavioural modulation. Nature 581, 204–208 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Zhu, Y. et al. A chemogenetic screen reveals that Trpv1-expressing neurons control regulatory T cells in the gut. Science 385, eadk1679 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pinho-Ribeiro, F. A. et al. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature 615, 472–481 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ono, H. K. et al. Histamine release from intestinal mast cells induced by staphylococcal enterotoxin A (SEA) evokes vomiting reflex in common marmoset. PLoS Pathog. 15, e1007803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shechter, R., London, A. & Schwartz, M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat. Rev. Immunol. 13, 206–218 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Betsholtz, C. et al. Advances and controversies in meningeal biology. Nat. Neurosci. 27, 2056–2072 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ringstad, G. & Eide, P. K. Molecular trans-dural efflux to skull bone marrow in humans with CSF disorders. Brain 145, 1464–1472 (2022).

    Article  PubMed  Google Scholar 

  98. Xu, H. et al. The choroid plexus synergizes with immune cells during neuroinflammation. Cell 187, 4946–4963.e4917 (2024).

    Article  CAS  PubMed  Google Scholar 

  99. Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 509, 507–511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Derk, J. et al. Formation and function of the meningeal arachnoid barrier around the developing mouse brain. Dev. Cell 58, 635–644.e634 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Travier, L. et al. Neonatal susceptibility to meningitis results from the immaturity of epithelial barriers and gut microbiota. Cell Rep. 35, 109319 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Liddelow, S. A. Fluids and barriers of the CNS: a historical viewpoint. Fluids Barriers CNS 8, 2 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Antila, S. et al. Development and plasticity of meningeal lymphatic vessels. J. Exp. Med. 214, 3645–3667 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. del Rio Serrato, A. et al. Perinatal brain group 3 innate lymphoid cells are involved in the formation of murine dural lymphatics. Preprint at bioRxiv https://doi.org/10.1101/2024.06.12.597323 (2024).

  105. Thion, M. S., Ginhoux, F. & Garel, S. Microglia and early brain development: an intimate journey. Science 362, 185–189 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Barron, J. J. et al. Group 2 innate lymphoid cells promote inhibitory synapse development and social behavior. Science 386, eadi1025 (2024).

  107. Lenz, K. M. et al. Mast cells in the developing brain determine adult sexual behavior. J. Neurosci. 38, 8044–8059 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tanabe, S. & Yamashita, T. B-1a lymphocytes promote oligodendrogenesis during brain development. Nat. Neurosci. 21, 506–516 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Schepanski, S. et al. Pregnancy-induced maternal microchimerism shapes neurodevelopment and behavior in mice. Nat. Commun. 13, 4571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cansever, D. et al. Lactation-associated macrophages exist in murine mammary tissue and human milk. Nat. Immunol. 24, 1098–1109 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Viola, M. F. et al. Dedicated macrophages organize and maintain the enteric nervous system. Nature 618, 818–826 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Stelzer, I. A. et al. Vertically transferred maternal immune cells promote neonatal immunity against early life infections. Nat. Commun. 12, 4706 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yousef, H. et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat. Med. 25, 988–1000 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Das, M. M. et al. Young bone marrow transplantation preserves learning and memory in old mice. Commun. Biol. 2, 73 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ruckh, J. M. et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10, 96–103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Necula, D., Riviere-Cazaux, C., Shen, Y. & Zhou, M. Insight into the roles of CCR5 in learning and memory in normal and disordered states. Brain Behav. Immun. 92, 1–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Garber, C. et al. T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses. Nat. Neurosci. 22, 1276–1288 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kaya, T. et al. CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat. Neurosci. 25, 1446–1457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang, A. C. et al. Physiological blood–brain transport is impaired with age by a shift in transcytosis. Nature 583, 425–430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Montagne, A. et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nation, D. A. et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Erickson, M. A., Morofuji, Y., Owen, J. B. & Banks, W. A. Rapid transport of CCL11 across the blood–brain barrier: regional variation and importance of blood cells. J. Pharmacol. Exp. Ther. 349, 497–507 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Fung, I. T. H. et al. Activation of group 2 innate lymphoid cells alleviates aging-associated cognitive decline. J. Exp. Med. 217, e20190915 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Baruch, K. et al. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346, 89–93 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Deczkowska, A. et al. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat. Commun. 8, 717 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Iram, T. et al. Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature 605, 509–515 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rustenhoven, J. et al. Age-related alterations in meningeal immunity drive impaired CNS lymphatic drainage. J. Exp. Med. 220, e20221929 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Da Mesquita, S. et al. Aging-associated deficit in CCR7 is linked to worsened glymphatic function, cognition, neuroinflammation, and β-amyloid pathology. Sci. Adv. 7, eabe4601 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lee, C. H. et al. Hypothalamic macrophage inducible nitric oxide synthase mediates obesity-associated hypothalamic inflammation. Cell Rep. 25, 934–946.e935 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ronan, L. et al. Obesity associated with increased brain age from midlife. Neurobiol. Aging 47, 63–70 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kedia, S. et al. T cell-mediated microglial activation triggers myelin pathology in a mouse model of amyloidosis. Nat. Neurosci. 27, 1468–1474 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Escoubas, C. C. et al. Type-I-interferon-responsive microglia shape cortical development and behavior. Cell 187, 1936–1954.e1924 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lin, C. J. et al. Mast cell deficiency improves cognition and enhances disease-associated microglia in 5XFAD mice. Cell Rep. 42, 113141 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Taranov, A. et al. The choroid plexus maintains adult brain ventricles and subventricular zone neuroblast pool, which facilitates poststroke neurogenesis. Proc. Natl Acad. Sci. USA 121, e2400213121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhu, Y. et al. Opioid-induced fragile-like regulatory T cells contribute to withdrawal. Cell 186, 591–606.e523 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Steffensen, A. B. et al. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat. Commun. 9, 2167 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mestre, H. et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 9, 4878 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Iliff, J. J. et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci. 33, 18190–18199 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jiang-Xie, L.-F. et al. Neuronal dynamics direct cerebrospinal fluid perfusion and brain clearance. Nature 627, 157–164 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Upton, M. L. & Weller, R. O. The morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J. Neurosurg. 63, 867–875 (1985).

    Article  CAS  PubMed  Google Scholar 

  145. Ahn, J. H. et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572, 62–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Yoon, J.-H. et al. Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage. Nature 625, 768–777 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Absinta, M. et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife 6, e29738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Choi, B.-R., Johnson, K. R., Maric, D. & McGavern, D. B. Monocyte-derived IL-6 programs microglia to rebuild damaged brain vasculature. Nat. Immunol. 24, 1110–1123 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ligocki, A. P. et al. Cerebrospinal fluid flow extends to peripheral nerves further unifying the nervous system. Sci. Adv. 10, eadn3259 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of Deczkowska lab for discussions and apologize to colleagues whose work was discussed without citation owing to space constraints. The Deczkowska lab for Brain-Immune Communication is supported by G5 funding from Institut Pasteur, the European Research Council Starting grant (BrainGate), Agence Nationale de la Recherche (ANR-PRC), Ville de Paris EMERGENCE(S) grant, Alzheimer’s Association Research Grant (AARG-22-917964) and Fédération pour la Recherche sur le Cerveau and Don Explore AD (Programme Explore de l’Institut Pasteur). Our lab is part of the DIM C-BRAINS, funded by the Conseil Régional d’Île-de-France. A.D.-B. is supported by Paris Region Fellowship Programme.

Author information

Authors and Affiliations

Authors

Contributions

M.K., A.D.-B. and S.A.-M. contributed equally. All the authors contributed to all aspects of the article.

Corresponding author

Correspondence to Aleksandra Deczkowska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Adrian Liston, Maria Rescigno and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovacs, M., Dominguez-Belloso, A., Ali-Moussa, S. et al. Immune control of brain physiology. Nat Rev Immunol 25, 515–527 (2025). https://doi.org/10.1038/s41577-025-01129-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-025-01129-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing