Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA synthesis technologies to close the gene writing gap

A Publisher Correction to this article was published on 30 June 2023

This article has been updated

Abstract

Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry. However, the synthesis of >200 bp sequences remains unaffordable. To overcome these limitations and start writing DNA as effectively as it is read, alternative technologies have been developed including molecular assembly and cloning methods, template-independent enzymatic synthesis, microarray and rolling circle amplification techniques. Here, we review the progress in developing and commercializing these technologies, which are exemplified by innovations from leading companies. We discuss pros and cons of each technology, the need for oversight and regulatory policies for DNA synthesis as a whole and give an overview of DNA synthesis business models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The state of the art in DNA synthesis.
Fig. 2: Mechanisms for solid-phase oligonucleotide synthesis and depurination.
Fig. 3: Mechanisms for TiEOS.
Fig. 4: Schematic representations of assembly methods for DNA synthesis.
Fig. 5: Schematic representation of thermally controlled DNA synthesis.
Fig. 6: Gene synthesis strategies.
Fig. 7: User autonomy in DNA synthesis.

Similar content being viewed by others

Change history

References

  1. Hughes, R. A. & Ellington, A. D. Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb. Perspect. Biol. 9, a023812 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods 11, 499–507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Pinheiro, V. B. & Holliger, P. Towards XNA nanotechnology: new materials from synthetic genetic polymers. Trends Biotechnol. 32, 321–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, I. & Berdis, A. J. Non-natural nucleotides as probes for the mechanism and fidelity of DNA polymerases. BBA Proteins Proteom. 1804, 1064–1080 (2010).

    Article  CAS  Google Scholar 

  6. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Schatz, M. C. & Phillippy, A. M. The rise of a digital immune system. Gigascience 1, 14 (2012).

    Article  Google Scholar 

  10. McLennan, A. Regulation of Synthetic Biology (Edward Elgar, 2018).

  11. Schwab, K. The fourth industrial revolution: what it means and how to respond. Foreign Affairs https://www.foreignaffairs.com/world/fourth-industrial-revolution (2015).

  12. Leurent, H. & Abbosh, O. Shaping the sustainability of production systems: fourth industrial revolution technologies for competitiveness and sustainable growth (World Economic Forum, 2019).

  13. Chui, M., Evers, M., Manyika, J., Zheng, A. & Nisbet, T. The Bio Revolution (McKinsey Global Institute, 2020).

  14. Collins, F. S. et al. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    Article  Google Scholar 

  15. Carlson, R. in Synthetic Biology: Parts, Devices and Applications Ch. 1 (ed. Smolke, C.) 3–13 (Wiley-Blackwell, 2018). The first detailed analysis of gene sequencing and gene synthesis technologies in light of Moore’s law highlighting the gap between our ability to read and write DNA.

  16. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blakney, A. K. & Bekker, L. G. DNA vaccines join the fight against COVID-19. Lancet 399, 1281–1282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han, S. H., Park, Y. J. & Park, C. M. HOS1 activates DNA repair systems to enhance plant thermotolerance. Nat. Plants 6, 1439–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Brophy, J. A. N. et al. Synthetic genetic circuits as a means of reprogramming plant roots. Science 377, 747–751 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucelic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  21. Cumbers, J. A New Way of Making DNA is About to Revolutionize the Biotech Industry (Forbes, 2020).

  22. Reisch, M. S. Danaher buys oligonucleotide maker Integrated DNA Technologies. Chem. Eng. News 96, 10–10 (2018).

    Google Scholar 

  23. Eisenstein, M. Enzymatic DNA synthesis enters new phase. Nat. Biotechnol. 38, 1113–1115 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Mohsen, M. G. & Kool, E. T. The discovery of rolling circle amplification and rolling circle transcription. Acc. Chem. Res. 49, 2540–2550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009). The seminal paper introducing a revolutionary method enabling the assembly of multiple DNA fragments in a single reaction — Gibson assembly.

    Article  CAS  PubMed  Google Scholar 

  26. Stemmer, W. P., Crameri, A., Ha, K. D., Brennan, T. M. & Heyneker, H. L. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Jensen, M. A. & Davis, R. W. Template-independent enzymatic oligonucleotide synthesis (TiEOS): its history, prospects, and challenges. Biochemistry 57, 1821–1832 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Sarac, I. & Hollenstein, M. Terminal deoxynucleotidyl transferase in the synthesis and modification of nucleic acids. ChemBioChem 20, 860–871 (2018).

    Article  Google Scholar 

  29. Crosby, S. et al. Oligonucleotide and nucleic acid synthesis. Patent WO/2019/145713 (2019).

  30. Kosuri, S. et al. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat. Biotechnol. 28, 1295–1299 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kodumal, S. J. et al. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc. Natl Acad. Sci. USA 101, 15573–15578 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Michelson, A. M. & Todd, A. R. Nucleotides part XXXII. Synthesis of a dithymidine dinucleotide containing a 3′: 5′-internucleotidic linkage. J. Chem. Soc. 1, 2632–2638 (1955).

    Article  Google Scholar 

  33. Nishimura, S., Jones, D. S. & Khorana, H. G. Studies on polynucleotides. 48. The in vitro synthesis of a co-polypeptide containing two amino acids in alternating sequence dependent upon a DNA-like polymer containing two nucleotides in alternating sequence. J. Mol. Biol. 13, 302–324 (1965).

    Article  CAS  PubMed  Google Scholar 

  34. Merrifield, R. B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

  35. Letsinger, R. L. & Mahadevan, V. Oligonucleotide synthesis on a polymer support. J. Am. Chem. Soc. 87, 3526–3527 (1965). Inception paper for chemical oligonucleotide synthesis.

    Article  CAS  PubMed  Google Scholar 

  36. Beaucage, S. L. & Caruthers, M. H. Deoxynucleoside phosphoramidites — a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22, 1859–1862 (1981). Introduction of phosphoramidite method for oligonucleotide synthesis that continues to underpin DNA synthesis today.

    Article  CAS  Google Scholar 

  37. Matteucci, M. D. & Caruthers, M. H. Synthesis of deoxyoligonucleotides on a polymer support. J. Am. Chem. Soc. 103, 3185–3191 (1981).

    Article  CAS  Google Scholar 

  38. McBride, L. J. & Caruthers, M. H. An investigation of several deoxynucleoside phosphoramidites useful for synthesizing deoxyoligonucleotides. Tetrahedron Lett. 24, 245–248 (1983).

    Article  CAS  Google Scholar 

  39. Vinayak, R. Chemical synthesis, analysis, and purification of oligoribonucleotides. Methods 5, 7–18 (1993).

    Article  CAS  Google Scholar 

  40. Caruthers, M. H. et al. Chemical synthesis of deoxynucleotides by the phosphoramidite method. Method. Enzymol. 154, 287–313 (1987).

    Article  CAS  Google Scholar 

  41. Letsinger, R. L., Caruthers, M. H. & Jerina, D. M. Reactions of nucleosides on polymer supports. Synthesis of thymidylylthymidylylthymidine. Biochemistry 6, 1379–1388 (1967).

    Article  CAS  PubMed  Google Scholar 

  42. Caruthers, M. H. The chemical synthesis of DNA/RNA: our gift to science. J. Biol. Chem. 288, 1420–1427 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Caruthers, M. H. & Beaucage, S. L. Phosphoramidite compounds and processes. US Patent 4,415,732 (1983).

  44. Caruthers, M. H. & Matteucci, M. D. Nucleosides useful in the preparation of polynucleotides. US Patent 4,500,707 (1985).

  45. Caruthers, M. H. & Beaucage, S. L. Phosphoramidite nucleoside compounds. US Patent 4,668,777 (1987).

  46. Pon, R. T. Solid‐phase supports for oligonucleotide synthesis. Curr. Protoc. Nucleic Acid Chem. 3, 1–28 (2000).

    Google Scholar 

  47. LeProust, E. M. et al. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res. 38, 2522–2540 (2010). High impact methodology for generating libraries of small DNA sequences while avoiding depurination during synthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hughes, T. R. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. LeProust, E., Zhang, H., Yu, P., Zhou, X. & Gao, X. Characterization of oligodeoxyribonucleotide synthesis on glass plates. Nucleic Acids Res. 29, 2171–2180 (2001).

  50. Cleary, M. A. et al. Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nat. Methods 1, 241–248 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Ferguson, A. J. et al. Thermofluidic chip containing virtual thermal wells. Eng. Biol. 3, 20–23 (2019).

    Article  Google Scholar 

  52. Crosby, S. Unlocking synthetic biology through DNA synthesis. Chim. Oggi 38, 22–24 (2020).

    CAS  Google Scholar 

  53. Letsinger, R. L. & Ogilvie, K. K. Nucleotide chemistry. XIII. Synthesis of oligothymidylates via phosphotriester intermediates. J. Am. Chem. Soc. 91, 3350–3355 (1969).

    Article  CAS  Google Scholar 

  54. Letsinger, R. L., Finnan, J. L., Heavner, G. A. & Lunsford, W. B. Nucleotide chemistry. XX. Phosphite coupling procedure for generating internucleotide links. J. Am. Chem. Soc. 97, 3278–3279 (1975).

  55. Letsinger, R. L. & Lunsford, W. B. Synthesis of thymidine oligonucleotides by phosphite triester intermediates. J. Am. Chem. Soc. 98, 3655–3661 (1976).

    Article  CAS  PubMed  Google Scholar 

  56. Smith, M., Rammler, D. H., Goldberg, I. H. & Khorana, H. G. Studies on polynucleotides. XIV. Specific synthesis of the C3″-C5″ interribonucleotide linkage. Syntheses of uridylyl-(3″→5″)uridine and uridylyl-(3″→5″)-adenosine. J. Am. Chem. Soc. 84, 430–440 (1962).

    Article  CAS  Google Scholar 

  57. Schaller, H., Weimann, G., Lerch, B. & Khorana, H. G. Studies on polynucleotides. XXIV.1 The stepwise synthesis of specific deoxyribopolynucleotides. Protected derivatives of deoxyribonucleosides and new syntheses of deoxyribonucleoside-3″ phosphates. J. Am. Chem. Soc. 85, 3821–3827 (1963).

    Article  CAS  Google Scholar 

  58. Krotz, A. H. et al. Solution stability and degradation pathway of deoxyribonucleoside phosphoramidites in acetonitrile. Nucleosides Nucleotides Nucleic Acids 23, 767–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Caruthers, M. & Matteucci, M. D. Process for preparing polynucleotides. US Patent 4,458,066 (1984).

  60. Caruthers, M. H. & Beaucage, S. L. Process for oligonucleotide synthesis using phosphoramidite intermediates. US Patent 4,973,679 (1990).

  61. Koster, H. & Sinha, N. D. Process for the preparation of oligonucleotides. US Patent 4,725,677 (1988).

  62. Efcavitch, J. W. & Heiner, C. Depurination as a yield decreasing mechanism in oligodeoxynucleotide synthesis. Nucleosides Nucleotides 4, 267 (1985).

    Article  Google Scholar 

  63. An, R. et al. Non-enzymatic depurination of nucleic acids: factors and mechanisms. PLoS ONE 9, e0115950 (2014).

    Article  Google Scholar 

  64. Suzuki, T., Ohsumi, S. & Makino, K. Mechanistic studies on depurination and apurinic site chain breakage in oligodeoxyribonucleotides. Nucleic Acids Res. 22, 4997–5003 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ravikumar, V., Andrade, M., Mulvey, D. & Cole., D. L. Carbocation scavenging during oligonucleotide synthesis. US Patent 5,510,476A (1996).

  66. Wooddell, C. I. & Burgess, R. R. Use of asymmetric PCR to generate long primers and single-stranded DNA for incorporating cross-linking analogs into specific sites in a DNA probe. Genome Res. 6, 886–892 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Veneziano, R. et al. Designer nanoscale DNA assemblies programmed from the top down. Science 352, e1534 (2016).

    Article  Google Scholar 

  68. Veneziano, R. et al. In vitro synthesis of gene-length single-stranded DNA. Sci. Rep. 8, e6548 (2018).

    Article  Google Scholar 

  69. Mitchell, L. A. et al. Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science 355, e1045 (2017).

  70. Reddy, M. P., Hanna, N. B. & Farooqui, F. Ultrafast cleavage and deprotection of oligonucleotides synthesis and use of CAc derivatives. Nucleosides Nucleotides 16, 1589–1598 (1997).

    Article  CAS  Google Scholar 

  71. Delarue, M. et al. Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase. EMBO J. 21, 427–439 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bollum, F. J. Chemically defined templates and initiators for deoxypolynucleotide synthesis. Science 144, 560–560 (1964).

    Article  CAS  PubMed  Google Scholar 

  73. Boulé, J. B., Rougeon, F. & Papanicolaou, C. Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides. J. Biol. Chem. 276, 31388–31393 (2001).

    Article  PubMed  Google Scholar 

  74. Lee, H. H., Church, G. M. & Kalhor, R. Enzymatic nucleic acid synthesis. Patent WO/2017/176541 (2017).

  75. Ybert, T. & Gariel, S. Method for synthesizing nucleic acids, in particular long nucleic acids, use of said method and kit for implementing said method. US Patent 2021/0130863 (2021).

  76. Ybert, T. & Gariel, S. Modified nucleotides for synthesis of nucleic acids, a kit containing such nucleotides and their use for the production of synthetic nucleic acid sequences or genes. US Patent 2020/0231619 (2020).

  77. Creton, S. Efficient product cleavage in template-free enzymatic synthesis of polynucleotides. Patent WO/2020/165137 (2020).

  78. Loftie-Eaton, W. et al. Novel variants of endonuclease V and uses thereof. Patent WO/2022/090057 (2022).

  79. Schott, H. & Schrade, H. Single‐step elongation of oligodeoxynucleotides using terminal deoxynucleotidyl transferase. Eur. J. Biochem. 143, 613–620 (1984).

    Article  CAS  PubMed  Google Scholar 

  80. Motea, E. A. & Berdis, A. J. Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Biochim. Biophys. Acta 1804, 1151–1166 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Efcavitch, J. W. & Sylvester, J. E. Modified template-independent enzymes for polydeoxynucleotide synthesis. US Patent 2016/0108382 (2016). Invention exacting an effective reversible termination mechanism with NTPs modified with terminators to add a single, defined nucleotide per reaction step.

  82. Hiatt, A. C. & Rose, F. D. Enzyme catalyzed template-independent creation of phosphodiester bonds using protected nucleotides. US Patent 5,990,300 (1999).

  83. Barthel, S., Palluk, S., Hillson, N. J., Keasling, J. D. & Arlow, D. H. Enhancing terminal deoxynucleotidyl transferase activity on substrates with 3′ terminal structures for enzymatic de novo DNA synthesis. Genes 11, e102 (2020).

    Article  Google Scholar 

  84. Deibel, M. R. & Coleman, M. S. Biochemical properties of purified human terminal deoxynucleotidyltransferase. J. Biol. Chem. 255, 4206–4212 (1980).

    Article  CAS  PubMed  Google Scholar 

  85. Chang, L. M. S. & Bollum, F. J. Multiple roles of divalent cation in the terminal deoxynucleotidyltransferase reaction. J. Biol. Chem. 265, 17436–17440 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Chang, L. M. & Bollum, F. J. Deoxynucleotide-polymerizing enzymes of calf thymus gland. V. Homogeneous terminal deoxynucleotidyl transferase. J. Biol. Chem. 246, 909–916 (1971).

    Article  CAS  PubMed  Google Scholar 

  87. Bhan, N. et al. Recording temporal signals with minutes resolution using enzymatic DNA synthesis. J. Am. Chem. Soc. 143, 16630–16640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Arzumanov, A. A., Victorova, L. S., Jasko, M. V., Yesipov, D. S. & Krayevsky, A. A. Terminal deoxynucleotidyl transferase catalyzes the reaction of DNA phosphorylation. Nucleic Acids Res. 28, 1276–1281 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Krayevsky, A., Victorova, L. S., Arzumanov, A. A. & Jasko, M. V. Terminal deoxynucleotidyl transferase catalysis of DNA (oligodeoxynucleotide) phosphorylation. Pharmacol. Ther. 85, 165–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Flamme, M. et al. Evaluation of 3′-phosphate as a transient protecting group for controlled enzymatic synthesis of DNA and XNA oligonucleotides. Commun. Chem. 5, e68 (2022).

    Article  Google Scholar 

  91. Collins, J., Singh, S. & Vanier, G. Microwave technology for solid phase peptide synthesis. Chim. Oggi 30, 26–29 (2012).

    Google Scholar 

  92. Hari Das, R., Ahirwar, R., Kumar, S. & Nahar, P. Microwave-assisted rapid enzymatic synthesis of nucleic acids. Nucleosides Nucleotides Nucleic Acids 35, 363–369 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Yoshimura, T., Sugiyama, J., Mineki, S. & Ohuchi, S. Effect of Microwaves on DNA and Proteins (Springer, 2017).

  94. DNA Script. Enzymatic DNA synthesis: technical note (DNA Script, 2021).

  95. Soskine, M., Champion, E. & Mchale, D. Stabilized N-terminally truncated terminal deoxynucleotidyl transferase variants and uses thereof. Patent WO/2022/063835 (2022).

  96. Hutter, D. et al. Labeled nucleoside triphosphates with reversibly terminating aminoalkoxyl groups. Nucleosides Nucleotides Nucleic Acids 29, 879–895 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Chen, M. C., Huang, J., Lazar, R. & McInroy, G. Azidomethyl ether deprotection method. US Patent 2018/0201968 (2018).

  98. Hoff, K., Halpain, M., Garbagnati, G., Edwards, J. S. & Zhou, W. Enzymatic synthesis of designer DNA using cyclic reversible termination and a universal template. ACS Synth. Biol. 9, 283–293 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Guo, J. et al. Four-color DNA sequencing with 3′-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides. Proc. Natl Acad. Sci. USA 105, 9145–9150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stemple, D. L., Mankowska, S. A. & Harvey, S. A. Compositions and methods for template free enzymatic nucleic acid synthesis. Patent WO/2018/152323 (2018).

  102. Mathews, A. S., Yang, H. & Montemagno, C. Photo-cleavable nucleotides for primer free enzyme mediated DNA synthesis. Org. Biomol. Chem. 14, 8278–8288 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Metzker, M. L. et al. Termination of DNA synthesis by novel 3′-modified deoxyribonucleoside 5′-triphosphates. Nucleic Acids Res. 22, 4259–4267 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wu, W. et al. Termination of DNA synthesis by N6-alkylated, not 3′-O-alkylated, photocleavable 2′-deoxyadenosine triphosphates. Nucleic Acids Res. 35, 6339–6349 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bowers, J. et al. Virtual terminator nucleotides for next-generation DNA sequencing. Nat. Methods 6, 593–595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Takeshita, L., Yamada, Y., Masaki, Y. & Seio, K. Synthesis of deoxypseudouridine 5′-triphosphate bearing the photoremovable protecting group at the N1 position capable of enzymatic incorporation to DNA. J. Org. Chem. 85, 1861–1870 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Flamme, M. et al. Towards the enzymatic synthesis of phosphorothioate containing LNA oligonucleotides. Bioorg. Med. Chem. Lett. 48, e128242 (2021).

    Article  Google Scholar 

  108. Wojciechowski, F. & Ybert, T. Method for preparing 3’-O-amino-2’-deoxyribonucleoside-5’-triphosphates. Patent WO/2021/198040 (2021).

  109. Champion, E., Soskine, M., Ybert, T. & Delarue, M. Variants of terminal deoxynucleotidyl transferase and uses thereof. Patent WO/2019/135007 (2019). Underpinning technology by DNA Script for template-independent DNA synthesis using re-engineered TdT.

  110. Ybert, T. Template-free enzymatic polynucleotide synthesis using dismutationless terminal deoxynucleotidyl transferase variants. Patent WO/2021/122539 (2021).

  111. Champion, E., Soskine, M., Jaziri, F. & Mchale, D. Chimeric terminal deoxynucleotidyl transferases for template-free enzymatic synthesis of polynucleotides. Patent WO/2021/122539 (2021).

  112. Soskine, M. & Champion, E. Terminal deoxynucleotidyl transferase variants and uses thereof. Patent WO/2021/213903 (2021).

  113. Lu, X. et al. Enzymatic DNA synthesis by engineering terminal deoxynucleotidyl transferase. ACS Catal. 12, 2988–2997 (2022).

    Article  CAS  Google Scholar 

  114. Chua, J. P. S. et al. Evolving a thermostable terminal deoxynucleotidyl transferase. ACS Synth. Biol. 9, 1725–1735 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Chen, M. C. & McInroy, G. R. Method of oligonucleotide synthesis. Patent WO/2020/178604 (2020).

  116. McInroy, G. R., Ost, T. W. B. & Lovedale, D. Methods relating to de novo enzymatic nucleic acid synthesis. Patent WO/2022/034331 (2022).

  117. Chen, M. C., McInroy, G. R., Fox, M. E. & Matuszewski, M. R. Nucleic acid polymer with amine-masked bases. Patent WO/2020/229831 (2020).

  118. Chen, M. C., Lazar, R. A., Huang, J. & McInroy, G. R. A process for the preparation of nucleic acid by means of 3′-o-azidomethyl nucleotide triphosphate. Patent WO/2016/139477 (2016).

  119. Ost, T. W. B., McInroy, G. R., Gaber, Z. B., Swerdlow, H. & Tognoloni, C. Methods of nucleic acid synthesis. Patent WO/2021/148809 (2021).

  120. Champion, E. et al. High efficiency template-free enzymatic synthesis of polynucleotides. Patent WO/2021/094251 (2021).

  121. Palluk, S. et al. De novo DNA synthesis using polymerase–nucleotide conjugates. Nat. Biotechnol. 36, 645–650 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Chang, L. M. S., Bollum, F. J. & Gallo, R. C. Molecular biology of terminal transferase. Crit. Rev. Biochem. 21, 27–52 (1986).

    Article  CAS  Google Scholar 

  123. Knapp, D. C. et al. Fluoride-cleavable, fluorescently labelled reversible terminators: synthesis and use in primer extension. Chem. Eur. J. 17, 2903–2915 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, M. C. & McInroy, G. R. Nucleotide derivatives containing amine masked moieties and their use in a templated and non-templated enzymatic nucleic acid synthesis. Patent WO/2019/097233 (2019).

  125. Chen, M. C., Lazar, R. A., Huang, J. & McInroy, G. R. Compositions and methods related to nucleic acid synthesis. US Patent 11236377 (2020).

  126. McInroy, G. R., Cook, I. H., Chen, M. C. & Chen, S. Modified terminal deoxynucleotidyl transferase (Tdt) enzymes. Patent WO/2022/029427 (2022).

  127. Chen, M. C., Huang, J. & McInroy, G. R. Use of terminal transferase enzyme in nucleic acid synthesis. Patent WO/2018/215803 (2018).

  128. Bell, N. M., Mankowska, S. A., Harvey, S. A. & Stemple, D. L. gSynth: synthesis and assembly of whole plasmids (Camena Bioscience, 2020).

  129. Efcavitch, W. & Siddiqi, S. Methods and apparatus for synthesizing nucleic acids. US Patent 8,808,989 (2014). Invention for template-free de novo DNA synthesis, nucleotide by nucleotide, by Molecular Assemblies.

  130. Aggarwal, S. Reusable initiators for synthesizing nucleic acids. Patent WO/2021/207158 (2021).

  131. Efcavitch, J. W. & Tubbs, J. L. Nucleic acid synthesis using DNA polymerase theta. Patent WO/2018/175436 (2018).

  132. Arlow, D. H. & Palluk, S. Nucleic acid synthesis and sequencing using tethered nucleoside triphosphates. US Patent 2019/0112627 (2019). Invention of exemplar reversible termination by ANSA Biotechnologies to sterically control prescribed polymerization using TdT-tethered NTPs.

  133. Bell, N. M., Mankowska, S. A., Harvey, S. A., Stemple, D. L. & Fraser, A. gSynth: a highly accurate, enzymatic, de novo synthesis and gene assembly technology (Camena Bioscience, 2019).

  134. Stemple, D. L., Fraser, A. G., Mankowska, S. & Bell, N. Compositions and methods for template-free geometric enzymatic nucleic acid synthesis. Patent WO/2020/150143 (2020). Exemplar methodology by Camena Bioscience for template-free nucleic acid synthesis using reversible terminating NTPs.

  135. Horgan, A., Sarvac, I., Niyomchon, S. & Godron, X. Increasing long-sequence yields in template-free enzymatic synthesis of polynucleotides. Patent WO/2021/018921 (2021).

  136. Hutchison, C. A. III et al. Design and synthesis of a minimal bacterial genome. Science 351, e6253 (2016).

    Article  Google Scholar 

  137. Casini, A., Storch, M., Baldwin, G. S. & Ellis, T. Bricks and blueprints: methods and standards for DNA assembly. Nat. Rev. Mol. Cell Biol. 16, 568–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Young, R., Haines, M., Storch, M. & Freemont, P. S. Combinatorial metabolic pathway assembly approaches and toolkits for modular assembly. Metab. Eng. 63, 81–101 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Gibson, D. G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Gibson, D. G., Smith, H. O., Hutchison, C. A. III, Venter, J. C. & Merryman, C. Chemical synthesis of the mouse mitochondrial genome. Nat. Methods 7, 901–903 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. TerMaat, J. R., Pienaar, E., Whitney, S. E., Mamedov, T. G. & Subramanian, A. Gene synthesis by integrated polymerase chain assembly and PCR amplification using a high-speed thermocycler. J. Microbiol. Methods 79, 295–300 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Roth, T. L., Milenkovic, L. & Scott, M. P. A rapid and simple method for DNA engineering using cycled ligation assembly. PLoS ONE 9, e107329 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Sayers, J. R. & Eckstein, F. Properties of overexpressed phage T5 D15 exonuclease. Similarities with Escherichia coli DNA polymerase I 5′-3′ exonuclease. J. Biol. Chem. 265, 18311–18317 (1990).

    Article  CAS  PubMed  Google Scholar 

  144. Housby, J. N., Thorbjarnardóttir, S. H., Jónsson, Z. O. & Southern, E. M. Optimised ligation of oligonucleotides by thermal ligases: comparison of Thermus scotoductus and Rhodothermus marinus DNA ligases to other thermophilic ligases. Nucleic Acids Res. 28, e10 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Takahashi, M., Yamaguchi, E. & Uchida, T. Thermophilic DNA ligase. Purification and properties of the enzyme from Thermus thermophilus HB8. J. Biol. Chem. 259, 10041–10047 (1984).

    Article  CAS  PubMed  Google Scholar 

  146. Saiki, R. K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    Article  CAS  PubMed  Google Scholar 

  147. Jayaraman, K., Fingar, S. A., Shah, J. & Fyles, J. Polymerase chain reaction-mediated gene synthesis: synthesis of a gene coding for isozyme c of horseradish peroxidase. Proc. Natl Acad. Sci. USA 88, 4084–4088 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Saiki, R. K. et al. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anaemia. Science 230, 1350–1354 (1985).

    Article  CAS  PubMed  Google Scholar 

  149. Hayes, M. J., Ferguson, A. J., Juncu, V. D. & Temple, S. Temperature control device. Patent WO/2018/104698 (2018).

  150. Hayes, M. J., Sanches-Kuiper, R. M. & Bygrave, D. A. Error detection during hybridization of target double-stranded nucleic acid. Patent WO/2019/064006 (2019).

  151. Crosby, S. R., Jennison, M. & Brennan, J. Thermally-cleavable protecting and linker groups. Patent WO/2018/189546 (2018).

  152. Brennan, J., Bygrave, D., Aditya, S. & Sanches-Kuiper, R. Method for producing double stranded polynucleotides based on oligonucleotides with selected and different melting temperatures. Patent WO/2018/167475 (2018). Enabling methodology of oligonucleotide selectivity for highly parallelized DNA synthesis under thermal control developed by Evonetix.

  153. Vladar, H. P., Redondo, F. & Aparecido, R. A novel method for synthesis of polynucleotides using a diverse library of oligonucleotides. Patent WO/2019/073072 (2019). Invention of a highly selective methodology by Ribbon Biolabs for DNA synthesis from diverse oligonucleotide libraries culminating in the first synthesis of >10 kb DNA.

  154. Vladar, H. P., Redondo, F. & Aparecido, R. A novel method for synthesis of polynucleotides using a diverse library of oligonucleotides. US Patent 2020/0283756 (2020).

  155. Rouillard, J. M. et al. Gene2Oligo: oligonucleotide design for in vitro gene synthesis. Nucleic Acids Res. 32, W176–W180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Banyai, W., Chen, S., Fernandez, A., Indermuhle, P. & Peck, B. J. De novo synthesized gene libraries. Patent WO/2015/021080 (2015).

  157. Peck, B. J., Noe, M., Pitsch, S. & Weiss, P. A. Highly accurate de novo polynucleotide synthesis. Patent WO/2020/139871 (2020).

  158. Horgan, A., Lachaize, H., Verado, D. & Godron, X. Massively parallel enzymatic synthesis of polynucleotides. Patent WO/2022/013094 (2022).

  159. Gao, X. et al. Oligonucleotide synthesis using solution photogenerated acids. J. Am. Chem. Soc. 120, 12698–12699 (1998).

    Article  CAS  Google Scholar 

  160. Gao, X. et al. A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids. Nucleic Acids Res. 29, 4744–4750 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fodor, S. P. A. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).

    Article  CAS  PubMed  Google Scholar 

  162. Zhou, X. et al. Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences. Nucleic Acids Res. 32, 5409–5417 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Septak, M. Kinetic studies on depurination and detritylation of CPG-bound intermediates during oligonucleotide synthesis. Nucleic Acids Res. 24, 3053–3058 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Warner, J. R., Reeder, P. J., Karimpour-Fard, A., Woodruff, L. B. A. & Gill, R. T. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat. Biotechnol. 28, 856–862 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Tian, J. et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 1050–1054 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Nugent, R., Chen, S., Kettleborough, R. & Raynard, N. Barcode-based nucleic acid sequence assembly. Patent WO/2020/257612 (2020).

  168. Smith, H. O., Hutchison, C. A. III, Pfannkoch, C. & Venter, J. C. Generating a synthetic genome by whole genome assembly: φX174 bacteriophage from synthetic oligonucleotides. Proc. Natl Acad. Sci. USA 100, 15440–15445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Schaudy, E., Lietard, J. & Somoza, M. M. Sequence preference and initiator promiscuity for de novo DNA synthesis by terminal deoxynucleotidyl transferase. ACS Synth. Biol. 10, 1750–1760 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chow, D. C., Lee, W. K., Zauscher, S. & Chilkoti, A. Enzymatic fabrication of DNA nanostructures: extension of a self-assembled oligonucleotide monolayer on gold arrays. J. Am. Chem. Soc. 127, 14122–14123 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Lee, H. et al. Photon-directed multiplexed enzymatic DNA synthesis for molecular digital data storage. Nat. Commun. 11, e5246 (2020).

    Article  Google Scholar 

  172. Deshpande, S., Yang, Y., Chilkoti, A. & Zauscher, S. Enzymatic synthesis and modification of high molecular weight DNA using terminal deoxynucleotidyl transferase. Method. Enzymol. 627, 163–188 (2019).

    Article  CAS  Google Scholar 

  173. Scott, V. L. et al. Novel synthetic plasmid and DoggyboneTM DNA vaccines induce neutralizing antibodies and provide protection from lethal influenza challenge in mice. Hum. Vacc. Immunother. 11, 1972–1982 (2015).

    Article  Google Scholar 

  174. Walters, A. A. et al. Comparative analysis of enzymatically produced novel linear DNA constructs with plasmids for use as DNA vaccines. Gene Ther. 21, 645–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Banér, J., Nilsson, M., Mendel-Hartvig, M. & Landegren, U. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res. 26, 5073–5078 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Hill, V. Production of closed linear DNA. Patent WO/2010/086626 (2010). Enzymatic methodology for manufacturing dbDNA as the first plasmid-free vector cassette encoding the sequence of interest invented by Touchlight Genetics.

  177. Kendirgi, F. et al. Novel linear DNA vaccines induce protective immune responses against lethal infection with influenza virus type A/H5N1. Hum. Vaccines 4, 410–419 (2008).

    Article  CAS  Google Scholar 

  178. Karbowniczek, K. et al. DoggyboneTM DNA: an advanced platform for AAV production. Cell Gene Ther. Insights 3, 731–738 (2017).

    Article  Google Scholar 

  179. Huang, W. M., Joss, L., Hsieh, T. & Casjens, S. Protelomerase uses a topoisomerase IB/Y-recombinase type mechanism to generate DNA hairpin ends. J. Mol. Biol. 337, 77–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Smith, H. O. & Wilcox, K. W. A restriction enzyme from hemophilus influenzae. J. Mol. Biol. 51, 389–391 (1970).

    Article  Google Scholar 

  181. Porter, N., Rothwell, P. J., Gehrig-Giannini, S., Babula, A. & Adie, T. A. J. Synthesis of DNA with improved yield. Patent WO/2020/035698 (2020).

  182. Porter, N., Rothwell, P. & Extance, J. Synthesis of DNA. Patent WO/2016/034849 (2016).

  183. Porter, N. Production of closed linear DNA using a palindromic sequence. Patent WO/2012/017210 (2012).

  184. Extance, A. How DNA could store all the world’s data. Nature 537, 22–24 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Hillson, N. et al. Building a global alliance of biofoundries. Nat. Commun. 10, e2040 (2019).

    Article  Google Scholar 

  186. Church, G., Gao, Y. & Kosuri, S. Next-generation digital information storage in DNA. Science 337, e1226355 (2012). The first book written using DNA demonstrating DNA as a digital medium for information storage.

    Article  Google Scholar 

  187. Lee, H. H., Kalhor, R., Goela, N., Bolot, J. & Church, G. M. Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nat. Commun. 10, e2383 (2019).

    Article  Google Scholar 

  188. Ceze, L., Nivala, J. & Strauss, K. Molecular digital data storage using DNA. Nat. Rev. Genet. 20, 456–466 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Vitak, S. Technology alliance boosts efforts to store data in DNA. Nature https://doi.org/10.1038/d41586-021-00534-w (2021).

    Article  PubMed  Google Scholar 

  190. Xu, C., Zhao, C., Ma, B. & Liu, H. Uncertainties in synthetic DNA-based data storage. Nucleic Acids Res. 49, 5451–5469 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Song, L. F., Deng, Z. H., Gong, Z. Y., Li, L. L. & Li, B. Z. Large-scale de novo oligonucleotide synthesis for whole-genome synthesis and data storage: challenges and opportunities. Front. Bioeng. Biotechnol. 9, e689797 (2021).

    Article  Google Scholar 

  192. Meiser, L. C. et al. Reading and writing digital data in DNA. Nat. Protoc. 15, 86–101 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Hoshika, S. et al. Hachimoji DNA and RNA: a genetic system with eight building blocks. Science 363, 884–887 (2020).

    Article  Google Scholar 

  194. Berg, P. Asilomar 1975: DNA modification secured. Nature 455, 290–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  195. Fatehi, L. & Hall, R. F. Synthetic biology in the FDA realm: toward productive oversight assessment. Food Drug Law J. 70, 339–369 (2015).

    PubMed  Google Scholar 

  196. International Gene Synthesis Consortium. About IGSC. International Gene Synthesis Consortium https://genesynthesisconsortium.org.

  197. National Academy of Medicine, National Academy of Sciences & the Royal Society. Heritable human genome editing (National Academies, 2020).

  198. Burmeister, A. R. Horizontal gene transfer. Evol. Med. Public Health 1, 193–194 (2015).

    Article  Google Scholar 

  199. Kalman, L. V. et al. Development and characterization of reference materials for genetic testing: focus on public partnerships. Ann. Lab. Med. 36, 513–520 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Spencer, M. The stereochemistry of deoxyribonucleic acid. II. Hydrogen-bonded pairs of bases. Acta Crystallogr. 12, 66–71 (1959).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the UK Defence Science and Technology Laboratory for initiating and supporting this review. The authors thank P. Oyston for the critical assessment of the work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. A.H. and M.G.R. wrote the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Maxim G. Ryadnov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Marcel Hollenstein, De-Ming Kong, Vincent Noireaux and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoose, A., Vellacott, R., Storch, M. et al. DNA synthesis technologies to close the gene writing gap. Nat Rev Chem 7, 144–161 (2023). https://doi.org/10.1038/s41570-022-00456-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00456-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing