Abstract
Elements heavier than hydrogen and helium, collectively termed metals, were created inside stars and dispersed through space at the final stages of stellar evolution. The relative amounts of different isotopes (variants of the same element with different masses) in stellar atmospheres provide clues about how our galaxy evolved chemically over billions of years. M dwarfs are small, cool, long-lived stars that comprise three-quarters of all stars in our galaxy. Their spectra exhibit rich fingerprints of their composition, making them potential tracers of chemical evolution. Here we measure rare carbon and oxygen isotopes in 32 nearby M dwarfs spanning a range of metallicities using high-resolution infrared spectroscopy. We find that stars with higher metal content have lower 12C/13C ratios, indicating they formed from material progressively enriched in 13C over time. This pattern is consistent with models where novae eruptions contributed significant amounts of 13C to the interstellar medium over the past few billion years. Our measurements of the 16O/18O ratio align with theoretical predictions and indicate that metal-rich stars attain significantly lower 16O/18O ratios than the Sun. These results establish M dwarfs as tracers of chemical evolution throughout cosmic history.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The reduced SPIRou data are available via the Canadian Astronomy Data Center (CADC) at https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/. The reduced data used in this work and the derived best-fit model spectra are publicly available via Zenodo at https://doi.org/10.5281/zenodo.15828872 (ref. 65).
Code availability
The software to calculate the cross-sections used in this work is available via GitHub at https://github.com/samderegt/pyROX. The radiative transfer code to generate atmospheric models is available at https://petitradtrans.readthedocs.io/en/2.7.7/. The equilibrium chemistry code FastChem is available via GitHub at https://github.com/NewStrangeWorlds/FastChem. The implementation of the Nested Sampling algorithm used in this work is available via GitHub at https://github.com/JohannesBuchner/PyMultiNest.
References
Henry, T. J., Kirkpatrick, J. D. & Simons, D. A. The Solar Neighborhood. I. Standard spectral types (K5–M8) for northern dwarfs within eight parsecs. Astron. J. 108, 1437 (1994).
Reylé, C. et al. The 10 parsec sample in the Gaia era. Astron. Astrophys. 650, A201 (2021).
Hayashi, C. & Nakano, T. Evolution of stars of small masses in the pre-main-sequence stages. Prog. Theor. Phys. 30, 460–474 (1963).
Tsuji, T. Near-infrared spectroscopy of M dwarfs. IV. A preliminary survey on the carbon isotopic ratio in M dwarfs. Publ. Astron. Soc. Jpn 68, 84 (2016).
Zhang, Y. et al. 13CO-rich atmosphere of a young accreting super-Jupiter. Nature 595, 370–372 (2021).
Xuan, J. W. et al. Validation of elemental and isotopic abundances in late-M spectral types with the benchmark HIP 55507 AB system. Astrophys. J. 962, 10 (2024).
Botelho, R. B. et al. Carbon, isotopic ratio 12C/13C, and nitrogen in solar twins: constraints for the chemical evolution of the local disc. Mon. Not. R. Astron. Soc. 499, 2196–2213 (2020).
Crossfield, I. J. M. et al. Unusual isotopic abundances in a fully convective stellar binary. Astrophys. J. 871, L3 (2019).
Prantzos, N., Aubert, O. & Audouze, J. Evolution of the carbon and oxygen isotopes in the Galaxy. Astron. Astrophys. 309, 760–774 (1996).
Romano, D. & Matteucci, F. Nova nucleosynthesis and galactic evolution of the CNO isotopes. Mon. Not. R. Astron. Soc. 342, 185–198 (2003).
Zhang, Z.-Y., Romano, D., Ivison, R. J., Papadopoulos, P. P. & Matteucci, F. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time. Nature 558, 260–263 (2018).
Romano, D. The evolution of CNO elements in galaxies. Astron. Astrophys. Rev. 30, 7 (2022).
Donati, J.-F. et al. SPIRou: NIR velocimetry and spectropolarimetry at the CFHT. Mon. Not. R. Astron. Soc. 498, 5684–5703 (2020).
Cristofari, P. I. et al. Measuring small-scale magnetic fields of 44 M dwarfs from SPIRou spectra with ZeeTurbo. Mon. Not. R. Astron. Soc. 526, 5648–5674 (2023).
Engle, S. G. & Guinan, E. F. Living with a red dwarf: the rotation–age relationships of M dwarfs. Astrophys. J. Lett. 954, L50 (2023).
Romano, D. et al. The Gaia-ESO survey: galactic evolution of lithium from iDR6. Astron. Astrophys. 653, A72 (2021).
Cristofari, P. I. et al. Estimating fundamental parameters of nearby M dwarfs from SPIRou spectra. Mon. Not. R. Astron. Soc. 511, 1893–1912 (2022).
Mollière, P. et al. petitRADTRANS: a Python radiative transfer package for exoplanet characterization and retrieval. Astron. Astrophys. 627, A67 (2019).
Kitzmann, D., Stock, J. W. & Patzer, A. B. C. FASTCHEM COND: equilibrium chemistry with condensation and rainout for cool planetary and stellar environments. Mon. Not. R. Astron. Soc. 527, 7263–7283 (2023).
Kobayashi, C., Karakas, A. I. & Umeda, H. The evolution of isotope ratios in the Milky Way Galaxy. Mon. Not. R. Astron. Soc. 414, 3231–3250 (2011).
Nomoto, K., Kobayashi, C. & Tominaga, N. Nucleosynthesis in stars and the chemical enrichment of galaxies. Ann. Rev. Astron. Astrophys. 51, 457–509 (2013).
Renzini, A. & Voli, M. Advanced evolutionary stages of intermediate-mass stars. I – Evolution of surface compositions. Astron. Astrophys. 94, 175 (1981).
Wiescher, M., Görres, J., Uberseder, E., Imbriani, G. & Pignatari, M. The cold and hot CNO cycles. Ann. Rev. Nucl. Part. Sci. 60, 381–404 (2010).
Karakas, A. I. & Lattanzio, J. C. The Dawes Review 2: nucleosynthesis and stellar yields of low- and intermediate-mass single stars. Publ. Astron. Soc. Aust. 31, e030 (2014).
Hirschi, R. Very low-metallicity massive stars: pre-SN evolution models and primary nitrogen production. Astron. Astrophys. 461, 571–583 (2007).
Limongi, M. & Chieffi, A. Presupernova evolution and explosive nucleosynthesis of rotating massive stars in the metallicity range −3 ≤ [Fe/H] ≤ 0. Astrophys. J. Suppl. 237, 13 (2018).
Romano, D., Karakas, A. I., Tosi, M. & Matteucci, F. Quantifying the uncertainties of chemical evolution studies – II. Stellar yields. Astron. Astrophys. 522, A32 (2010).
Meynet, G., Ekström, S. & Maeder, A. The early star generations: the dominant effect of rotation on the CNO yields. Astron. Astrophys. 447, 623–639 (2006).
Chiappini, C. et al. A new imprint of fast rotators: low 12C/13C ratios in extremely metal-poor halo stars. Astron. Astrophys. 479, L9–L12 (2008).
Spite, M., Spite, F. & Barbuy, B. 12C/13C ratio and CNO abundances in the classical very old metal-poor dwarf HD 140283. Astron. Astrophys. 652, A97 (2021).
Milam, S. N., Savage, C., Brewster, M. A., Ziurys, L. M. & Wyckoff, S. The 12C/13C isotope gradient derived from millimeter transitions of CN: the case for galactic chemical evolution. Astrophys. J. 634, 1126��1132 (2005).
Kubryk, M., Prantzos, N. & Athanassoula, E. Radial migration in a bar-dominated disc galaxy – I. Impact on chemical evolution. Mon. Not. R. Astron. Soc. 436, 1479–1491 (2013).
Fuhrmann, K., Chini, R., Kaderhandt, L. & Chen, Z. On the local stellar populations. Mon. Not. R. Astron. Soc. 464, 2610–2621 (2017).
Mann, A. W., Feiden, G. A., Gaidos, E. & Boyajian, T. How to constrain your M dwarf: measuring effective temperature, bolometric luminosity, mass, and radius. Astrophys. J. 804, 64 (2015).
Heger, A. & Woosley, S. E. The nucleosynthetic signature of population III. Astrophys. J. 567, 532–543 (2002).
Wilson, T. L. Isotopes in the interstellar medium and circumstellar envelopes. Rep. Prog. Phys. 62, 143 (1999).
Ayres, T. R., Lyons, J. R., Ludwig, H.-G., Caffau, E. & Wedemeyer-Böhm, S. Is the Sun lighter than the Earth? Isotopic CO in the photosphere, viewed through the lens of three-dimensional spectrum synthesis. Astrophys. J. 765, 46 (2013).
Molaro, P. et al. The 12C/13C isotopic ratio at the dawn of chemical evolution. Astron. Astrophys. 679, A72 (2023).
Ryan, S. G., Aoki, W., Norris, J. E. & Beers, T. C. The origins of two classes of carbon-enhanced, metal-poor stars. Astrophys. J. 635, 349 (2005).
Brandl, B. et al. METIS: the Mid-infrared ELT Imager and Spectrograph. The Messenger 182, 22–26 (2021).
Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope: I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, A80 (2022).
Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006).
Cristofari, P. I. et al. Estimating the atmospheric properties of 44 M dwarfs from SPIRou spectra. Mon. Not. R. Astron. Soc. 516, 3802–3820 (2022).
Cristofari, P. I. et al. Constraining atmospheric parameters and surface magnetic fields with ZeeTurbo: an application to SPIRou spectra. Mon. Not. R. Astron. Soc. 522, 1342–1357 (2023).
Cook, N. J. et al. APERO: A PipelinE to Reduce Observations—demonstration with SPIRou. Publ. Astron. Soc. Pac. 134, 114509 (2022).
Tennyson, J. et al. The 2024 release of the ExoMol database: molecular line lists for exoplanet and other hot atmospheres. J. Quant. Spectrosc. Radiat. Transf. 326, 109083 (2024).
Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).
Kurucz, R. L. in Stellar Atmospheres: Beyond Classical Models NATO ASI Series (eds Crivellari, L. et al.) 441–448 (Springer, 1991).
Kramida, A., Ralchenko, Yu., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database (version 5.12) (National Institute of Standards and Technology, 2024); https://doi.org/10.18434/T4W30F
Zhang, Y. et al. Elemental abundances of the super-Neptune WASP-107b from Hubble and Spitzer photometry. Astron. J. 165, 62 (2023).
González Picos, D. et al. The ESO SupJup Survey – II. The 12C/13C isotope ratios of three young brown dwarfs with CRIRES+. Astron. Astrophys. 689, A212 (2024).
Czesla, S. et al. PyA: Python astronomy-related packages (Astrophysics Source Code Library, 2019).
Husser, T.-O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).
Grant, D. & Wakeford, H. ExoTiC-LD: thirty seconds to stellar limb-darkening coefficients. J. Open Source Softw. 9, 6816 (2024).
Hauschildt, P. H., Allard, F. & Baron, E. The NextGen model atmosphere grid for 3000 ≤ Teff ≤ 10,000 K. Astrophys. J. 512, 377 (1999).
Hahlin, A. et al. Multi-scale magnetic field investigation of the M-dwarf eclipsing binary CU Cancri. Astron. Astrophys. 684, A175 (2024).
Ruffio, J.-B. et al. Detecting exomoons from radial velocity measurements of self-luminous planets: application to observations of HR 7672 B and future prospects. Astron. J. 165, 113 (2023).
Feroz, F., Hobson, M. P., Cameron, E. & Pettitt, A. N. Importance nested sampling and the MultiNest Algorithm. Open J. Astrophys. 2, 10 (2019).
Buchner, J. PyMultiNest: Python interface for MultiNest (Astrophysics Source Code Library, 2016).
Lawson, C. L. & Hanson, R. J. Solving Least Squares Problems (Society for Industrial and Applied Mathematics, 1995).
Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).
Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).
de Regt, S. et al. The ESO SupJup Survey – I. Chemical and isotopic characterisation of the late L-dwarf DENIS J0255-4700 with CRIRES+. Astron. Astrophys. 688, A116 (2024).
Polyansky, O. L. et al. ExoMol molecular line lists XIX: high-accuracy computed hot line lists for \({{\rm{H}}}_{2}^{18}\rm{O}\) and \({{\rm{H}}}_{2}^{18}\rm{O}\). Mon. Not. R. Astron. Soc. 466, 1363–1371 (2017).
González Picos, D., Snellen, I. & de Regt, S. Chemical evolution imprints in rare isotopes of nearby M dwarfs. Zenodo https://doi.org/10.5281/zenodo.15828872 (2025).
Gaia Collaboration et al. Gaia Early Data Release 3: summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).
Lyons, J. R., Gharib-Nezhad, E. & Ayres, T. R. A light carbon isotope composition for the Sun. Nat. Commun. 9, 908 (2018).
Wang, X.-L., Fang, M., Liu, Y., Zhang, M.-M. & Cui, W.-Y. LAMOST reveals long-lived protoplanetary disks. Astron. J. 169, 141 (2025).
Ribas, I. et al. A candidate super-Earth planet orbiting near the snow line of Barnard’s star. Nature 563, 365–368 (2018).
Bouvier, A. & Wadhwa, M. The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat. Geosci. 3, 637–641 (2010).
Asplund, M., Amarsi, A. M. & Grevesse, N. The chemical make-up of the Sun: a 2020 vision. Astron. Astrophys. 653, A141 (2021).
Acknowledgements
D.G.P. thanks D. Romano for providing the GCE models and valuable insights on the evolution of isotope ratios. D.G.P., I.S. and S.d.R. acknowledge NWO grant OCENW.M.21.010. This work used the Dutch national e-infrastructure with the support of the SURF Cooperative via grant no. EINF-4556. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated from the summit of Maunakea by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France and the University of Hawaii. The observations at the Canada-France-Hawaii Telescope were performed with care and respect from the summit of Maunakea, which is a significant cultural and historic site. This work is based on observations obtained with SPIRou, an international project led by the Institut de Recherche en Astrophysique et Planétologie (IRAP) in Toulouse, France.
Author information
Authors and Affiliations
Contributions
D.G.P. led the data processing and analysis and wrote the paper. I.S. contributed to the model fitting, interpretation of the results and writing of the paper. S.d.R. contributed to the code development of the models, provided the code for the opacity calculator and advised on model fitting. All authors contributed to the text and figures of the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Paul Cristofari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
González Picos, D., Snellen, I. & de Regt, S. Chemical evolution imprints in the rare isotopes of nearby M dwarfs. Nat Astron (2025). https://doi.org/10.1038/s41550-025-02641-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41550-025-02641-4