Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer vaccines: the next immunotherapy frontier

Abstract

After several decades, therapeutic cancer vaccines now show signs of efficacy and potential to help patients resistant to other standard-of-care immunotherapies, but they have yet to realize their full potential and expand the oncologic armamentarium. Here, we classify cancer vaccines by what is known of the included antigens, which tumors express those antigens and where the antigens colocalize with antigen-presenting cells, thus delineating predefined vaccines (shared or personalized) and anonymous vaccines (ex vivo or in situ). To expedite clinical development, we highlight the need for accurate immune monitoring of early trials to acknowledge failures and advance the most promising vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cancer vaccine types.

Similar content being viewed by others

References

  1. Kosinska, A. D. et al. Synergy of therapeutic heterologous prime–boost hepatitis B vaccination with CpG-application to improve immune control of persistent HBV infection. Sci. Rep. 9, 10808 (2019).

  2. DeMaria, P. J. & Bilusic, M. Cancer vaccines. Hematol. Oncol. Clin. North Am. 33, 199–214 (2019).

    Article  PubMed  Google Scholar 

  3. Old, L. J., Clarke, D. A. & Benacerraf, B. Effect of Bacillus Calmette–Guérin infection on transplanted tumours in the mouse. Nature 184, 291–292 (1959).

    Article  PubMed  Google Scholar 

  4. Hammerich, L. et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat. Med. 25, 814–824 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Brody, J. D. et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J. Clin. Oncol. 28, 4324–4332 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. J, R. et al. Serotherapy of acute lymphoblastic leukemia with monoclonal antibody. Blood 58, 141–152 (1981).

    Article  Google Scholar 

  8. Berger, R. et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin. Cancer Res. 14, 3044–3051 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin–T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bendandi, M. et al. Complete molecular remissions induced by patient-specific vaccination plus granulocyte–monocyte colony-stimulating factor against lymphoma. Nat. Med. 5, 1171–1177 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Coiffier, B. et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 235–242 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Melief, C. J., van Hall, T., Arens, R., Ossendorp, F. & van der Burg, S. H. Therapeutic cancer vaccines. J. Clin. Invest. 125, 3401–3412 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Malekzadeh, P. et al. Antigen experienced T cells from peripheral blood recognize p53 neoantigens. Clin. Cancer Res. 26, 1267–1276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Salmon, H. et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Katanasaka, Y. et al. Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol. Cancer 12, 31 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taberna, M. et al. Human papillomavirus-related oropharyngeal cancer. Ann. Oncol. 28, 2386–2398 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Qi, X. W. et al. Wilms’ tumor 1 (WT1) expression and prognosis in solid cancer patients: a systematic review and meta-analysis. Sci. Rep. 5, 8924 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chong, C., Coukos, G. & Bassani-Sternberg, M. Identification of tumor antigens with immunopeptidomics. Nat. Biotechnol. 40, 175–188 (2021).

  23. Cheever, M. A. et al. The prioritization of cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research. Clin. Cancer Res. 15, 5323–5337 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tsao, S. W., Tramoutanis, G., Dawson, C. W., Lo, A. K. F. & Huang, D. P. The significance of LMP1 expression in nasopharyngeal carcinoma. Semin. Cancer Biol. 12, 473–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Lin, M. C., Lin, Y. C., Chen, S. T., Young, T. H. & Lou, P. J. Therapeutic vaccine targeting Epstein–Barr virus latent protein, LMP1, suppresses LMP1-expressing tumor growth and metastasis in vivo. BMC Cancer 17, 18 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bollard, C. M. et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein–Barr virus latent membrane proteins. J. Clin. Oncol. 32, 798–808 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Chia, W. K. et al. A phase II study evaluating the safety and efficacy of an adenovirus-ΔLMP1–LMP2 transduced dendritic cell vaccine in patients with advanced metastatic nasopharyngeal carcinoma. Ann. Oncol. 23, 997–1005 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Taylor, G. S. et al. A recombinant modified vaccinia Ankara vaccine encoding Epstein–Barr virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer. Clin. Cancer Res. 20, 5009–5022 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kenter, G. G. et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 361, 1838–1847 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Massarelli, E. et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial. JAMA Oncol. 5, 67–73 (2019).

    Article  PubMed  Google Scholar 

  31. Trimble, C. L. et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386, 2078–2088 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, T. J. et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat. Commun. 5, 5317 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Harper, D. M. et al. The efficacy and safety of tipapkinogen sovacivec therapeutic HPV vaccine in cervical intraepithelial neoplasia grades 2 and 3: randomized controlled phase II trial with 2.5 years of follow-up. Gynecol. Oncol. 153, 521–529 (2019).

    Article  PubMed  Google Scholar 

  34. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Schuster, J. et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol. 17, 854–861 (2015).

  36. Weller, M. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 18, 1373–1385 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Reardon, D. A. et al. Rindopepimut with bevacizumab for patients with relapsed EGFRvIII-expressing glioblastoma (ReACT): results of a double-blind randomized phase II trial. Clin. Cancer Res. 26, 1586–1594 (2020).

  38. Oka, Y. et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc. Natl Acad. Sci. USA 101, 13885–13890 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maslak, P. G. et al. Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv. 2, 224–234 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keilholz, U. et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113, 6541–6548 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Anguille, S. et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood 130, 1713–1721 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thomas, R. et al. NY-ESO-1 based immunotherapy of cancer: current perspectives. Front. Immunol. 9, 947 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. D’angelo, S. P. et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1c259T cells in synovial sarcoma. Cancer Discov. 8, 944–957 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Karbach, J. et al. Efficient in vivo priming by vaccination with recombinant NY-ESO-1 protein and CpG in antigen naive prostate cancer patients. Clin. Cancer Res. 17, 861–870 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Dhodapkar, M. V. et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci. Transl. Med. 6, 232–251 (2014).

    Article  CAS  Google Scholar 

  46. Bhardwaj, N. et al. Flt3 ligand augments immune responses to anti-DEC-205-NY-ESO-1 vaccine through expansion of dendritic cell subsets. Nat. Cancer 1, 1204–1217 (2020).

  47. Vansteenkiste, J. et al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: phase II randomized study results. J. Clin. Oncol. 31, 2396–2403 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Kruit, W. H. J. et al. Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase II study of the European Organisation for Research and Treatment of Cancer Melanoma Group in Metastatic Melanoma. J. Clin. Oncol. 31, 2413–2420 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Dreno, B. et al. MAGE-A3 immunotherapeutic as adjuvant therapy for patients with resected, MAGE-A3-positive, stage III melanoma (DERMA): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 19, 916–929 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Vansteenkiste, J. F. et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 17, 822–835 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. L, S. et al. Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2′-deoxycytidine. Cancer Res. 64, 9167–9171 (2004).

    Article  Google Scholar 

  52. Besse, B. et al. Activity of OSE-2101 in HLA-A2+ non-small cell lung cancer (NSCLC) patients after failure to immune checkpoint inhibitors (IO): final results of phase III Atalante-1 randomised trial. In ESMO Congress S1283–S1346 (Annals of Oncology, 2021).

  53. Slingluff, C. L. et al. Multicenter, double-blind, placebo-controlled trial of seviprotimut-L polyvalent melanoma vaccine in patients with post-resection melanoma at high risk of recurrence. J. Immunother. Cancer 9, e003272 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mittendorf, E. A. et al. Efficacy and safety analysis of nelipepimut-S vaccine to prevent breast cancer recurrence: a randomized, multicenter, phase III clinical trial. Clin. Cancer Res. 25, 4248–4254 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Mittendorf, E. A. et al. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide AE37 vaccine in breast cancer patients to prevent recurrence. Ann. Oncol. 27, 1241–1248 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Knutson, K. L., Schiffman, K. & Disis, M. L. Immunization with a HER-2/Neu helper peptide vaccine generates HER-2/Neu CD8 T-cell immunity in cancer patients. J. Clin. Invest. 107, 477–484 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. RLB, C. & BJ, C. Clinical development of immunotherapies for HER2+ breast cancer: a review of HER2-directed monoclonal antibodies and beyond. NPJ Breast Cancer 6, 10 (2020).

    Article  CAS  Google Scholar 

  58. Piperno-Neumann, S. et al. Abstract CT002: phase 3 randomized trial comparing tebentafusp with investigator’s choice in first line metastatic uveal melanoma. Cancer Res. 81, CT002 (2021).

    Article  Google Scholar 

  59. Rosenberg, S. A. et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med. 4, 321–327 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schwartzentruber, D. J. et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med. 364, 2119–2127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cunha, A. C., Weigle, B., Kiessling, A., Bachmann, M. & Rieber, E. P. Tissue-specificity of prostate specific antigens: comparative analysis of transcript levels in prostate and non-prostatic tissues. Cancer Lett. 236, 229–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. McNeel, D. G. et al. Phase II trial of a DNA vaccine encoding prostatic acid phosphatase (pTVG-HP [MVI-816]) in patients with progressive, nonmetastatic, castration-sensitive prostate cancer. J. Clin. Oncol. 37, 3507–3517 (2019).

  63. Kim, P. et al. Adoptive T cell therapy targeting somatic p53 mutations. J. Immunother. Cancer 8, A165–A166 (2020).

    Article  Google Scholar 

  64. Antonia, S. J. et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin. Cancer Res. 12, 878–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Hardwick, N. R. et al. p53-reactive T cells are associated with clinical benefit in patients with platinum-resistant epithelial ovarian cancer after treatment with a p53 vaccine and gemcitabine chemotherapy. Clin. Cancer Res. 24, 1315–1325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chiappori, A. A. et al. Randomized-controlled phase II trial of salvage chemotherapy after immunization with a TP53-transfected dendritic cell-based vaccine (Ad.p53-DC) in patients with recurrent small cell lung cancer. Cancer Immunol. Immunother. 68, 517–527 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Speetjens, F. M. et al. Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin. Cancer Res. 15, 1086–1095 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Chung, V. et al. Evaluation of safety and efficacy of p53MVA vaccine combined with pembrolizumab in patients with advanced solid cancers. Clin. Transl. Oncol. 21, 363–372 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Quandt, J. et al. Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. Oncoimmunology 7, e1500671 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tang, K., Wu, Y. H., Song, Y. & Yu, B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J. Hematol. Oncol. 14, 68 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kjeldsen, J. W. et al. A phase 1/2 trial of an immune-modulatory vaccine against IDO/PD-L1 in combination with nivolumab in metastatic melanoma. Nat. Med. 27, 2212–2223 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Nielsen, M. et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 12, 1007–1017 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ott, P. A. et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell 183, 347–362 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Carreno, B. M. et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803–808 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Hu, Z. et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 27, 515–525 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Cafri, G. et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J. Clin. Invest. 130, 5976–5988 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Burger, M. L. et al. Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors. Cell 184, 4996–5014 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Drake, C. G. et al. Personalized viral-based prime/boost immunotherapy targeting patient-specific or shared neoantigens: immunogenicity, safety, and efficacy results from two ongoing phase I studies. J. Clin. Oncol. 38, 3137–3137 (2020).

    Article  Google Scholar 

  83. Marron, T. U., Ronner, L., Martin, P. E., Flowers, C. R. & Brody, J. D. Vaccine strategies for the treatment of lymphoma: preclinical progress and clinical trial update. Immunotherapy 8, 1335–1346 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. KA, F. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N. Engl. J. Med. 307, 686–687 (1982).

    Article  Google Scholar 

  85. M, N. et al. Rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3L exhibit distinct phenotypical and functional characteristics. J. Leukoc. Biol. 99, 437–446 (2016).

    Article  CAS  Google Scholar 

  86. Delong, T. et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351, 711–714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Peng, X. et al. A-to-I RNA editing contributes to proteomic diversity in cancer. Cancer Cell 33, 817–828 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Moseley, P. Stress proteins and the immune response. Immunopharmacology 48, 299–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Testori, A. et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100-21 Study Group. J. Clin. Oncol. 26, 955–962 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Wood, C. et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 372, 145–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Bloch, O. et al. Autologous heat shock protein peptide vaccination for newly diagnosed glioblastoma: impact of peripheral PD-L1 expression on response to therapy. Clin. Cancer Res. 23, 3575–3584 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kozłowska, A., Mackiewicz, J. & Mackiewicz, A. Therapeutic gene modified cell based cancer vaccines. Gene 525, 200–207 (2013).

    Article  PubMed  CAS  Google Scholar 

  93. Eager, R. & Nemunaitis, J. GM-CSF gene-transduced tumor vaccines. Mol. Ther. 12, 18–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Ho, V. T. et al. GM-CSF secreting leukemia cell vaccination for MDS/AML after allogeneic HSCT: a randomized double blinded phase 2 trial. Blood Adv. 6, 2183–2194 (2021).

  95. Ghisoli, M. et al. Three-year follow up of GMCSF/bi-shRNAfurin DNA-transfected autologous tumor immunotherapy (Vigil) in metastatic advanced Ewing’s sarcoma. Mol. Ther. 24, 1478–1483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rocconi, R. P. et al. Gemogenovatucel-T (Vigil) immunotherapy as maintenance in frontline stage III/IV ovarian cancer (VITAL): a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Oncol. 21, 1661–1672 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Vermorken, J. B. et al. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 353, 345–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Prins, R. M. et al. Comparison of glioma-associated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients. J. Immunother. 36, 152–157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dillman, R. O. et al. Randomized phase II trial of autologous dendritic cell vaccines versus autologous tumor cell vaccines in metastatic melanoma: 5-year follow up and additional analyses. J. Immunother. Cancer 6, 19 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Di Nicola, M. et al. Vaccination with autologous tumor-loaded dendritic cells induces clinical and immunologic responses in indolent B-cell lymphoma patients with relapsed and measurable disease: a pilot study. Blood 113, 18–27 (2009).

    Article  PubMed  CAS  Google Scholar 

  101. Tanyi, J. L. et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl. Med. 10, eaao5931 (2018).

  102. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Subbiah, V. et al. Cytokines produced by dendritic cells administered intratumorally correlate with clinical outcome in patients with diverse cancers. Clin. Cancer Res. 24, 3845–3856 (2018).

  104. Kolstad, A. et al. Sequential intranodal immunotherapy induces antitumor immunity and correlated regression of disseminated follicular lymphoma. Blood 125, 82–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Cox, M. C. et al. Clinical and antitumor immune responses in relapsed/refractory follicular lymphoma patients after intranodal injections of IFNα-dendritic cells and rituximab: a phase I clinical trial. Clin. Cancer Res. 25, 5231–5272 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Lee, J. M. et al. Phase I trial of intratumoral injection of CCL21 gene-modified dendritic cells in lung cancer elicits tumor-specific immune responses and CD8+ T-cell infiltration. Clin. Cancer Res. 23, 4556–4568 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lowenstein, P. R. et al. First-in-human phase I trial of the combination of two adenoviral vectors expressing HSV1-TK and FLT3L for the treatment of newly diagnosed resectable malignant glioma: initial results from the therapeutic reprogramming of the brain immune system. J. Clin. Oncol. 37, 2019 (2019).

    Article  Google Scholar 

  108. Papagno, L. et al. The TLR9 ligand CpG ODN 2006 is a poor adjuvant for the induction of de novo CD8+ T-cell responses in vitro. Sci. Rep. 10, 11620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Haymaker, C. et al. Tilsotolimod with ipilimumab drives tumor responses in anti-PD-1 refractory melanoma. Cancer Discov. 11, 1996–2013 (2021).

  110. Milhem, M. et al. Intratumoral injection of CMP-001, a Toll-like receptor 9 (TLR9) agonist, in combination with pembrolizumab reversed programmed death receptor 1 (PD-1) blockade resistance in advanced melanoma. J. Immunother. Cancer 8, A331 (2020).

    Google Scholar 

  111. Ribas, A. et al. SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study. Cancer Discov. 8, 1250–1257 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Frank, M. J. et al. In situ vaccination with a TLR9 agonist and local low-dose radiation induces systemic responses in untreated indolent lymphoma. Cancer Discov. 8, 1258–1269 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sultan, H., Salazar, A. M. & Celis, E. Poly-ICLC, a multi-functional immune modulator for treating cancer. Semin. Immunol. 49, 101414 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. de la Torre, A. N. et al. A phase I trial using local regional treatment, nonlethal irradiation, intratumoral and systemic polyinosinic-polycytidylic acid polylysine carboxymethylcellulose to treat liver cancer: in search of the abscopal effect. J. Hepatocell. Carcinoma 4, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kyi, C. et al. Therapeutic immune modulation against solid cancers with intratumoral poly-ICLC: a pilot trial. Clin. Cancer Res. 24, 4937–4948 (2018).

  116. Rodríguez-Ruiz, M. E. et al. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann. Oncol. 29, 1312–1319 (2018).

    Article  PubMed  Google Scholar 

  117. Theodoraki, M. N. et al. Helicase-driven activation of NFκB–COX2 pathway mediates the immunosuppressive component of dsRNA-driven inflammation in the human tumor microenvironment. Cancer Res. 78, 4292–4302 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Márquez-Rodas, I. et al. Intratumoral nanoplexed poly I:C BO-112 in combination with systemic anti-PD-1 for patients with anti-PD-1-refractory tumors. Sci. Transl. Med. 12, eabb0391 (2020).

    Article  PubMed  CAS  Google Scholar 

  119. Kobayashi, G. [Augmentation of cytotoxicity of regional lymph node lymphocytes of gastric cancer after intratumoral injection of OK-432]. Nihon Geka Gakkai Zasshi 91, 68–76 (1990).

  120. Endo, H. et al. Phase I trial of preoperative intratumoral injection of immature dendritic cells and OK-432 for resectable pancreatic cancer patients. J. Hepatobiliary Pancreat. Sci. 19, 465–475 (2012).

    Article  PubMed  Google Scholar 

  121. Bhatia, S. et al. Intratumoral G100, a TLR4 agonist, induces antitumor immune responses and tumor regression in patients with Merkel cell carcinoma. Clin. Cancer Res. 25, 1185–1195 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Flowers, C. R. et al. Long term follow-up of a phase 2 study examining intratumoral G100 alone and in combination with pembrolizumab in patients with follicular lymphoma. Blood 132, 2892 (2018).

    Article  Google Scholar 

  123. Melero, I., Castanon, E., Alvarez, M., Champiat, S. & Marabelle, A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat. Rev. Clin. Oncol. 18, 558–576 (2021).

  124. Alvarez, M. et al. Intratumoral co-injection of the poly I:C-derivative BO-112 and a STING agonist synergize to achieve local and distant anti-tumor efficacy. J. Immunother. Cancer 9, e002953 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Andtbacka, R. H. I. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Kaufman, H. L. et al. Systemic versus local responses in melanoma patients treated with talimogene laherparepvec from a multi-institutional phase II study. J. Immunother. Cancer 4, 12 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Noguera-Ortega, E., Guallar-Garrido, S. & Julián, E. Mycobacteria-based vaccines as immunotherapy for non-urological cancers. Cancers 12, 1802 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  128. Janku, F. et al. Phase I clinical study of intratumoral injection of oncolytic Clostridium novyi-NT spores in patients with advanced cancers. Eur. J. Cancer 69, S94 (2016).

    Article  Google Scholar 

  129. Hammerich, L., Bhardwaj, N., Kohrt, H. E. & Brody, J. D. In situ vaccination for the treatment of cancer. Immunotherapy 8, 315–330 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. O’Donnell, J. S., Teng, M. W. L. & Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16, 151–167 (2018).

    Article  CAS  Google Scholar 

  131. Morris, Z. S. et al. Tumor-specific inhibition of in situ vaccination by distant untreated tumor sites. Cancer Immunol. Res. 6, 825–834 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dannull, J. et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. 115, 3623–3633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Marabelle, A. et al. Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J. Clin. Invest. 123, 2447–2463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kohrt, H. E. et al. Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials. J. Immunother. Cancer 4, 15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Agata, Y. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8, 765–772 (1996).

    Article  CAS  PubMed  Google Scholar 

  136. Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Neelapu, S. S. et al. Vaccine-induced tumor-specific immunity despite severe B-cell depletion in mantle cell lymphoma. Nat. Med. 11, 986–991 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Di Giacomo, A. M. et al. Ipilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): an open-label, single-arm phase 2 trial. Lancet Oncol. 13, 879–886 (2012).

    Article  PubMed  CAS  Google Scholar 

  139. Robins, H. S. et al. Digital genomic quantification of tumor-infiltrating lymphocytes. Sci. Transl. Med. 5, 214ra169 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tickotsky, N., Sagiv, T., Prilusky, J., Shifrut, E. & Friedman, N. McPAS-TCR: a manually-curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics 33, 2924–2929 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 596, 119–125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Welters, M. J. P. et al. Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc. Natl Acad. Sci. USA 107, 11895–11899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kirkwood, J. M. et al. Immunogenicity and antitumor effects of vaccination with peptide vaccine ± granulocyte–monocyte colony-stimulating factor and/or IFIN-α2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group Phase II Trial E1696. Clin. Cancer Res. 15, 1443–1451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Van Rooij, N. et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. 31, e439–e442 (2013).

    Article  PubMed  Google Scholar 

  146. Mellman, I. et al. De-risking immunotherapy: report of a consensus workshop of the Cancer Immunotherapy Consortium of the Cancer Research Institute. Cancer Immunol. Res. 4, 279–288 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Danilova, L. et al. The Mutation-Associated Neoantigen Functional Expansion of Specific T cells (MANAFEST) assay: a sensitive platform for monitoring antitumor immunity. Cancer Immunol. Res. 6, 888–899 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Odunsi, K. et al. Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc. Natl Acad. Sci. USA 104, 12837–12842 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gasser, O. et al. A phase I vaccination study with dendritic cells loaded with NY-ESO-1 and α-galactosylceramide: induction of polyfunctional T cells in high-risk melanoma patients. Cancer Immunol. Immunother. 67, 285–298 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Clifton, G. T. T. et al. Results of a randomized phase IIb trial of nelipepimut-S + trastuzumab versus trastuzumab to prevent recurrences in patients with high-risk HER2 low-expressing breast cancer. Clin. Cancer Res. 26, 2515–2523 (2020).

  151. Lesterhuis, W. J. et al. Wild-type and modified gp100 peptide-pulsed dendritic cell vaccination of advanced melanoma patients can lead to long-term clinical responses independent of the peptide used. Cancer Immunol. Immunother. 60, 249–260 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Steele, J. C. et al. Phase I/II trial of a dendritic cell vaccine transfected with DNA encoding melan A and gp100 for patients with metastatic melanoma. Gene Ther. 18, 584–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Twardowski, P. et al. Randomized phase II trial of sipuleucel-T immunotherapy preceded by sensitizing radiation therapy and sipuleucel-T alone in patients with metastatic castrate resistant prostate cancer. Cancer Treat. Res. Commun. 19, 100116 (2019).

    Article  PubMed  Google Scholar 

  154. McNeel, D. G. et al. Real-time immune monitoring to guide plasmid DNA vaccination schedule targeting prostatic acid phosphatase in patients with castration-resistant prostate cancer. Clin. Cancer Res. 20, 3692–3704 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chung, V. M. et al. A phase 1 study of p53MVA vaccine in combination with pembrolizumab. J. Clin. Oncol. 36, 206 (2018).

    Article  Google Scholar 

  156. Freedman, A. et al. Placebo-controlled phase III trial of patient-specific immunotherapy with mitumprotimut-T and granulocyte–macrophage colony-stimulating factor after rituximab in patients with follicular lymphoma. J. Clin. Oncol. 27, 3036–3043 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Levy, R. et al. Active idiotypic vaccination versus control immunotherapy for follicular lymphoma. J. Clin. Oncol. 32, 1797–1803 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Schuster, S. J. et al. Vaccination with patient-specific tumor-derived antigen in first remission improves disease-free survival in follicular lymphoma. J. Clin. Oncol. 29, 2787–2794 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hurvitz, S. A. & Timmerman, J. M. Recombinant, tumour-derived idiotype vaccination for indolent B cell non-Hodgkin’s lymphomas: a focus on FavId™. Expert Opin. Biol. Ther. 5, 841–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Bloch, O. et al. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro Oncol. 16, 274–279 (2014).

  161. Le, D. T. et al. Results from a phase IIb, randomized, multicenter study of GVAX pancreas and CRS-207 compared with chemotherapy in adults with previously treated metastatic pancreatic adenocarcinoma (ECLIPSE study). Clin. Cancer Res. 25, 5493–5502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lee, V. et al. Phase II study of GM-CSF secreting allogeneic pancreatic cancer vaccine (GVAX) with PD-1 blockade antibody and stereotactic body radiation therapy (SBRT) for locally advanced pancreas cancer (LAPC). J. Clin. Oncol. 35, TPS4154 (2017).

    Article  Google Scholar 

  163. Carson, W. E. et al. Adjuvant vaccine immunotherapy of resected, clinically node-negative melanoma: long-term outcome and impact of HLA class I antigen expression on overall survival. Cancer Immunol. Res. 2, 981–987 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Oh, J. et al. Phase II study of Vigil® DNA engineered immunotherapy as maintenance in advanced stage ovarian cancer. Gynecol. Oncol. 143, 504–510 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Manning, L. et al. Assessment of low dose Vigil® engineered autologous tumor cell (EATC) immunotherapy in patients with advanced solid tumors. Clin. Oncol. 2, 1254 (2017).

  166. Liau, L. M. et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J. Transl. Med. 16, 142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Andtbacka, R. H. I. et al. Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte–macrophage colony-stimulating factor in unresectable stage III–IV melanoma. J. Immunother. Cancer 7, 145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Chesney, J. et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol. 36, 1658–1667 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Moehler, M. et al. Vaccinia-based oncolytic immunotherapy pexastimogene devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: a randomized multicenter phase IIb trial (TRAVERSE). Oncoimmunology 8, 1615817 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lang, F. F. et al. Phase I study of DNX-2401 (delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J. Clin. Oncol. 36, 1419–1427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Pascual-Pasto, G. et al. Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. Sci. Transl. Med. 11, eaat9321 (2019).

  172. Geletneky, K. et al. Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial. Mol. Ther. 25, 2620–2634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Annels, N. E. et al. Phase I trial of an ICAM-1-targeted immunotherapeutic-coxsackievirus A21 (CVA21) as an oncolytic agent against non muscle-invasive bladder cancer. Clin. Cancer Res. 25, 5818–5831 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. Kicielinski, K. P. et al. Phase 1 clinical trial of intratumoral reovirus infusion for the treatment of recurrent malignant gliomas in adults. Mol. Ther. 22, 1056–1062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Harrington, K. J. et al. Two-stage phase I dose-escalation study of intratumoral reovirus type 3 dearing and palliative radiotherapy in patients with advanced cancers. Clin. Cancer Res. 16, 3067–3077 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ohri, N. et al. FLT3 ligand (CDX-301) and stereotactic radiotherapy for advanced non-small cell lung cancer. J. Clin. Oncol. 38, 9618 (2020).

    Article  Google Scholar 

  177. Nemunaitis, J. et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 10, 737–744 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Drake, C. G. et al. Safety and preliminary immunogenicity of JNJ-64041809, a live attenuated, double-deleted Listeria monocytogenes-based immunotherapy, in metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 37, e16509 (2019).

    Article  Google Scholar 

  179. Levy, R. et al. SD-101, a novel class C CpG-oligodeoxynucleotide (ODN) Toll-like receptor 9 (TLR9) agonist, given with low dose radiation for untreated low grade B-cell lymphoma: interim results of a phase 1/2 trial. Blood 128, 2974 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

J.S.-A. was supported by fellowships from the Swedish Research Council (2017-00565) and the Swedish Society for Medical Research (SSMF) (P16-0026). The other authors have no funding sources relevant to the preparation of this text to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua D. Brody.

Ethics declarations

Competing interests

J.D.B. reports non-financial support from Kite–Gilead during the conduct of the study, grants from Merck, Genentech, BMS, Kite–Gilead, Acerta, Seattle Genetics and Pharmacyclics and grants from Janssen outside the submitted work. No other disclosures were reported.

Peer review

Peer review information

Nature Cancer thanks Kunle Odunsi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M.J., Svensson-Arvelund, J., Lubitz, G.S. et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer 3, 911–926 (2022). https://doi.org/10.1038/s43018-022-00418-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-022-00418-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer