Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tracking virus outbreaks in the twenty-first century

Abstract

Emerging viruses have the potential to impose substantial mortality, morbidity and economic burdens on human populations. Tracking the spread of infectious diseases to assist in their control has traditionally relied on the analysis of case data gathered as the outbreak proceeds. Here, we describe how many of the key questions in infectious disease epidemiology, from the initial detection and characterization of outbreak viruses, to transmission chain tracking and outbreak mapping, can now be much more accurately addressed using recent advances in virus sequencing and phylogenetics. We highlight the utility of this approach with the hypothetical outbreak of an unknown pathogen, ‘Disease X’, suggested by the World Health Organization to be a potential cause of a future major epidemic. We also outline the requirements and challenges, including the need for flexible platforms that generate sequence data in real-time, and for these data to be shared as widely and openly as possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Outbreak scenarios and the resulting phylogenetic trees of virus genomes from sampled human cases.
Fig. 2: Transmission chain tracking during outbreaks using virus genomics.
Fig. 3: Integration and testing predictors of phylogeographic spread.

Similar content being viewed by others

References

  1. Drosten, C. et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Ksiazek, T. G. et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. M. E. & Fouchier, R. A. M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. J. Med. 360, 2605–2615 (2009).

    Article  Google Scholar 

  5. Smith, G. J. D. et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459, 1122–1125 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Holmes, E. C., Dudas, G., Rambaut, A. & Andersen, K. G. The evolution of Ebola virus: insights from the 2013–2016 epidemic. Nature 538, 193–200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grubaugh, N. D., Faria, N. R., Andersen, K. G. & Pybus, O. G. Genomic insights into Zika virus emergence and spread. Cell 172, 1160–1162 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Morse, S. S. in Plagues and Politics (ed. Mullan, F.) 8–26 (Palgrave Macmillan, London, 2001).

  9. Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holmes, E. C., Rambaut, A. & Andersen, K. G. Pandemics: spend on surveillance, not prediction. Nature 558, 180–182 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Holland, J. et al. Rapid evolution of RNA genomes. Science 215, 1577–1585 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. Duffy, S., Shackelton, L. A. & Holmes, E. C. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9, 267–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Kiko, H., Niggemann, E. & Rüger, W. Physical mapping of the restriction fragments obtained from bacteriophage T4 dC-DNA with the restriction endonucleases SmaI, KpnI and BglII. Mol. Gen. Genet. 172, 303–312 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. Chungue, E., Deubel, V., Cassar, O., Laille, M. & Martin, P. M. Molecular epidemiology of dengue 3 viruses and genetic relatedness among dengue 3 strains isolated from patients with mild or severe form of dengue fever in French Polynesia. J. Gen. Virol. 74, 2765–2770 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Lanciotti, R. S. et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286, 2333–2337 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Kinnunen, L., Pöyry, T. & Hovi, T. Generation of virus genetic lineages during an outbreak of poliomyelitis. J. Gen. Virol. 72, 2483–2489 (1991).

    Article  PubMed  Google Scholar 

  17. McNearney, T. et al. Limited sequence heterogeneity among biologically distinct human immunodeficiency virus type 1 isolates from individuals involved in a clustered infectious outbreak. Proc. Natl Acad. Sci. USA 87, 1917–1921 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nichol, S. T. et al. Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 262, 914–917 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Ou, C. Y. et al. Molecular epidemiology of HIV transmission in a dental practice. Science 256, 1165–1171 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Power, J. P. et al. Molecular epidemiology of an outbreak of infection with hepatitis C virus in recipients of anti-D immunoglobulin. Lancet 345, 1211–1213 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Rossouw, E., Tsilimigras, C. W. & Schoub, B. D. Molecular epidemiology of a coxsackievirus B3 outbreak. J. Med. Virol. 34, 165–171 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Briese, T. et al. Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog. 5, e1000455 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gardy, J. L. & Loman, N. J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 19, 9–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Salazar-Bravo, J., Ruedas, L. A. & Yates, T. L. Mammalian reservoirs of arenaviruses. Curr. Top. Microbiol. Immunol. 262, 25–63 (2002).

    CAS  PubMed  Google Scholar 

  26. dos Reis, M., Donoghue, P. C. J. & Yang, Z. Bayesian molecular clock dating of species divergences in the genomics era. Nat. Rev. Genet. 17, 71–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Rambaut, A. & Holmes, E. The early molecular epidemiology of the swine-origin A/H1N1 human influenza pandemic. PLoS Curr. 1, RRN1003 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Korber, B. Timing the ancestor of the HIV-1 pandemic strains. Science 288, 1789–1796 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Cotten, M. et al. Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus. Emerg. Infect. Dis. 19, 736–42B (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rambaut, A. Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16, 395–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Drummond, A., Pybus, O. G. & Rambaut, A. Inference of viral evolutionary rates from molecular sequences. Adv. Parasitol. 54, 331–358 (2003).

    Article  PubMed  Google Scholar 

  32. Drummond, A. J., Nicholls, G. K., Rodrigo, A. G. & Solomon, W. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161, 1307–1320 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Möller, S., du Plessis, L. & Stadler, T. Impact of the tree prior on estimating clock rates during epidemic outbreaks. Proc. Natl Acad. Sci. USA 115, 4200–4205 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duchêne, S., Holmes, E. C. & Ho, S. Y. W. Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proc. Biol. Sci. 281, 20140732 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hall, M. D., Woolhouse, M. E. J. & Rambaut, A. Using genomics data to reconstruct transmission trees during disease outbreaks. Rev. Sci. Tech. 35, 287–296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fraser, C. et al. Pandemic potential of a strain of influenza A (H1N1): early findings. Science 324, 1557–1561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Volz, E. M., Kosakovsky Pond, S. L., Ward, M. J., Leigh Brown, A. J. & Frost, S. D. W. Phylodynamics of infectious disease epidemics. Genetics 183, 1421–1430 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rasmussen, D. A., Ratmann, O. & Koelle, K. Inference for nonlinear epidemiological models using genealogies and time series. PLoS Comput. Biol. 7, e1002136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stadler, T. et al. Estimating the basic reproductive number from viral sequence data. Mol. Biol. Evol. 29, 347–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Kühnert, D., Stadler, T., Vaughan, T. G. & Drummond, A. J. Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birth-death SIR model. J. R. Soc. Interface 11, 20131106 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stadler, T., Kühnert, D., Rasmussen, D. A. & du Plessis, L. Insights into the early epidemic spread of Ebola in Sierra Leone provided by viral sequence data. PLoS Curr. https://doi.org/10.1371/currents.outbreaks.02bc6d927ecee7bbd33532ec8ba6a25f (2014).

  42. Volz, E. & Pond, S. Phylodynamic analysis of Ebola virus in the 2014 Sierra Leone epidemic. PLoS Curr. https://doi.org/10.1371/currents.outbreaks.6f7025f1271821d4c815385b08f5f80e (2014).

  43. McCormick, J. B. & Fisher-Hoch, S. P. Lassa fever. Curr. Top. Microbiol. Immunol. 262, 75–109 (2002).

    CAS  PubMed  Google Scholar 

  44. Andersen, K. G. et al. Clinical sequencing uncovers origins and evolution of Lassa virus. Cell 162, 738–750 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gire, S. K. et al. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345, 1369–1372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mena, I. et al. Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. eLife 5, e16777 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Morelli, M. J. et al. A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data. PLoS Comput. Biol. 8, e1002768 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cottam, E. M. et al. Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proc. Biol. Sci. 275, 887–895 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cottam, E. M. et al. Molecular epidemiology of the foot-and-mouth disease virus outbreak in the United Kingdom in 2001. J. Virol. 80, 11274–11282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mate, S. E. et al. Molecular evidence of sexual transmission of Ebola virus. N. Engl. J. Med. 373, 2448–2454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Blackley, D. J. et al. Reduced evolutionary rate in re-emerged Ebola virus transmission chains. Sci. Adv. 2, e1600378 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Diallo, B. et al. Resurgence of Ebola virus disease in Guinea linked to a survivor with virus persistence in seminal fluid for more than 500 days. Clin. Infect. Dis. 63, 1353–1356 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Duffy, S., Shackelton, L. A. & Holmes, E. C. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9, 267–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Biek, R., Pybus, O. G., Lloyd-Smith, J. O. & Didelot, X. Measurably evolving pathogens in the genomic era. Trends Ecol. Evol. 30, 306–313 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Baele, G., Suchard, M. A., Rambaut, A. & Lemey, P. Emerging concepts of data integration in pathogen phylodynamics. Syst. Biol. 66, e47–e65 (2017).

    PubMed  Google Scholar 

  56. Campbell, F., Strang, C., Ferguson, N., Cori, A. & Jombart, T. When are pathogen genome sequences informative of transmission events? PLoS Pathog. 14, e1006885 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mate, S. E. et al. Molecular evidence of sexual transmission of Ebola virus. N. Engl. J. Med. 373, 2448–2454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Resik, S. et al. Limitations to contact tracing and phylogenetic analysis in establishing HIV type 1 transmission networks in Cuba. AIDS Res. Hum. Retroviruses 23, 347–356 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Worby, C. J., Lipsitch, M. & Hanage, W. P. Shared genomic variants: identification of transmission routes using pathogen deep-sequence data. Am. J. Epidemiol. 186, 1209–1216 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Faria, N. R., Suchard, M. A., Rambaut, A. & Lemey, P. Toward a quantitative understanding of viral phylogeography. Curr. Opin. Virol. 1, 423–429 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dudas, G. et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 544, 309–315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grubaugh, N. D. et al. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 90, 4864 (2017).

    Google Scholar 

  63. Vaughan, T. G., Kühnert, D., Popinga, A., Welch, D. & Drummond, A. J. Efficient Bayesian inference under the structured coalescent. Bioinformatics 30, 2272–2279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Müller, N. F., Rasmussen, D. A. & Stadler, T. The structured coalescent and its approximations. Mol. Biol. Evol. 34, 2970–2981 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kühnert, D., Stadler, T., Vaughan, T. G. & Drummond, A. J. Phylodynamics with migration: a computational framework to quantify population structure from genomic data. Mol. Biol. Evol. 33, 2102–2116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. De Maio, N., Wu, C.-H., O’Reilly, K. M. & Wilson, D. New routes to phylogeography: a bayesian structured coalescent approximation. PLoS Genet. 11, e1005421 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lemey, P. et al. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog. 10, e1003932 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, E. et al. Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J. Virol. 74, 3227–3234 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cardoso, J. & da, C. et al. Yellow fever virus in Haemagogus leucocelaenus and Aedes serratus mosquitoes, southern Brazil, 2008. Emerg. Infect. Dis. 16, 1918–1924 (2010).

    Article  PubMed Central  Google Scholar 

  70. Faria, N. R. et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science 361, 894–899 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Diehl, W. E. et al. Ebola virus glycoprotein with increased infectivity dominated the 2013–2016 epidemic. Cell 167, 1088–1097 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Urbanowicz, R. A. et al. Human adaptation of Ebola virus during the West African outbreak. Cell 167, 1079–1085 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Leroy, E. M. et al. Fruit bats as reservoirs of Ebola virus. Nature 438, 575–576 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Walsh, P. D., Biek, R. & Real, L. A. Wave-like spread of Ebola Zaire. PLoS Biol. 3, e371 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carroll, S. A. et al. Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences. J. Virol. 87, 2608–2616 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dudas, G. & Rambaut, A. Phylogenetic analysis of Guinea 2014 EBOV Ebolavirus outbreak. PLoS Curr. https://doi.org/10.1371/currents.outbreaks.84eefe5ce43ec9dc0bf0670f7b8b417d (2014).

  77. Rambaut, A. et al. Comment on ‘Mutation rate and genotype variation of Ebola virus from Mali case sequences’. Science 353, 658 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Lam, T. T.-Y., Zhu, H., Chong, Y. L., Holmes, E. C. & Guan, Y. Puzzling origins of the Ebola outbreak in the Democratic Republic of the Congo, 2014. J. Virol. 89, 10130–10132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Blackley, D. J. et al. Reduced evolutionary rate in reemerged Ebola virus transmission chains. Sci. Adv. 2, e1600378 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yozwiak, N. L. et al. Roots, not parachutes: research collaborations combat outbreaks. Cell 166, 5–8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yozwiak, N. L., Schaffner, S. F. & Sabeti, P. C. Data sharing: make outbreak research open access. Nature 518, 477–479 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. WHO. Policy statement on data sharing by WHO in the context of public health emergencies (as of 13 April 2016). Wkly. Epidemiol. Rec. 91, 237–240 (2016).

    Google Scholar 

  83. WHO R&D Blueprint Meeting on Pathogen Genetic Sequence Data (GSD) Sharing in the Context of Public Health Emergencies, 28-29 September 2017 (WHO, 2017).

  84. Johansson, M. A., Reich, N. G., Meyers, L. A. & Lipsitch, M. Preprints: an underutilized mechanism to accelerate outbreak science. PLoS Med. 15, e1002549 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Callaway, E. Zika-microcephaly paper sparks data-sharing confusion. Nature News https://doi.org/10.1038/nature.2016.19367 (2016).

  86. Luksza, M. & Lässig, M. A predictive fitness model for influenza. Nature 507, 57–61 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Neher, R. A., Bedford, T., Daniels, R. S., Russell, C. A. & Shraiman, B. I. Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses. Proc. Natl Acad. Sci. USA 113, E1701–9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Osterholm, M. T. et al. Transmission of Ebola viruses: what we know and what we do not know. mBio 6, e00137 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Sabir, J. S. M. et al. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science 351, 81–84 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Dudas, G., Carvalho, L. M., Rambaut, A. & Bedford, T. MERS-CoV spillover at the camel-human interface. eLife 7, (2018).

  92. Faria, N. R. et al. Zika virus in the Americas: early epidemiological and genetic findings. Science 352, 345–349 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Faria, N. R. et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546, 406–410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Metsky, H. C. et al. Zika virus evolution and spread in the Americas. Nature 66, 366 (2017).

    Google Scholar 

  95. Christie, A. et al. Possible sexual transmission of Ebola virus — Liberia, 2015. MMWR Morb. Mortal. Wkly. Rep. 64, 479–481 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. Whitmer, S. L. M. et al. Active Ebola virus replication and heterogeneous evolutionary rates in EVD survivors. Cell Rep. 22, 1159–1168 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dietzel, E., Schudt, G., Krähling, V., Matrosovich, M. & Becker, S. Functional characterization of adaptive mutations during the West African Ebola virus outbreak. J. Virol. 91, e01913–16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. List of Blueprint Priority Diseases (WHO, 2018); https://www.who.int/blueprint/priority-diseases/en/

  99. Boisen, M. L. et al. Field validation of the ReEBOV antigen rapid test for point-of-care diagnosis of Ebola virus infection. J. Infect. Dis. 214, S203–S209 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Broadhurst, M. J. et al. ReEBOV antigen rapid test kit for point-of-care and laboratory-based testing for Ebola virus disease: a field validation study. Lancet 386, 867–874 (2015).

    Article  PubMed  Google Scholar 

  101. Chotiwan, N. et al. Rapid and specific detection of Asian- and African-lineage Zika viruses. Sci. Transl. Med. 9, eaag0538 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Imai, M. et al. Development of H5-RT-LAMP (loop-mediated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection. Vaccine 24, 6679–6682 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Hong, T. C. T. et al. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 42, 1956–1961 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Hattersley, S. M., Greenman, J. & Haswell, S. J. The application of microfluidic devices for viral diagnosis in developing countries. Methods Mol. Biol. 949, 285–303 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Patolsky, F. et al. Electrical detection of single viruses. Proc. Natl Acad. Sci. USA 101, 14017–14022 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, Y. et al. Field-effect transistor biosensor for rapid detection of Ebola antigen. Sci. Rep. 7, 10974 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Afsahi, S. et al. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens. Bioelectron. 100, 85–88 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Pardee, K. et al. Paper-based synthetic gene networks. Cell 159, 940–954 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gootenberg, J. S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438–442 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Myhrvold, C. et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 360, 444–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gu, W. et al. Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol. 17, 41 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Siddle, K. J. et al. Capturing diverse microbial sequence with comprehensive and scalable probe design. bioRxiv https://doi.org/10.1101/279570 (2018).

  115. Matranga, C. B. et al. Enhanced methods for unbiased deep sequencing of Lassa and Ebola RNA viruses from clinical and biological samples. Genome Biol. 15, 519 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Quick, J. et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat. Protoc. 12, 1261–1276 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Dudas and S. Knemeyer for help with figure creation. N.D.G. is supported by NIH training grant 5T32AI007244-33. P.L. and A.R. acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725422-ReservoirDOCS) and from the Wellcome Trust Collaborative Award (grant number 206298/Z/17/Z—ARTICnetwork). P.L. acknowledges support by the Research Foundation—Flanders (‘Fonds voor Wetenschappelijk Onderzoek - Vlaanderen’, G066215N, G0D5117N and G0B9317N). O.G.P. is supported by the European Union’s Seventh Framework Programme (FP7/2007-2013)/European Research Council (614725-PATHPHYLODYN) and by the Oxford Martin School. E.C.H. is supported by an ARC Australian Laureate Fellowship (FL170100022). K.G.A. is a Pew Biomedical Scholar, and is supported by NIH NCATS CTSA UL1TR002550, NIAID contract HHSN272201400048C, NIAID R21AI137690, NIAID U19AI135995, and The Ray Thomas Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All listed authors have contributed to the conceptualization, writing and preparation of the manuscript.

Corresponding authors

Correspondence to Jason T. Ladner, Andrew Rambaut or Edward C. Holmes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grubaugh, N.D., Ladner, J.T., Lemey, P. et al. Tracking virus outbreaks in the twenty-first century. Nat Microbiol 4, 10–19 (2019). https://doi.org/10.1038/s41564-018-0296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0296-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research