Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of translational control

Key Points

  • Translational regulation can be global or mRNA specific, and most examples of translational regulation that have been described so far affect the rate-limiting initiation step.

  • Global control of translation is frequently exerted by regulating the phosphorylation or availability of initiation factors. Two of the most well-known examples are the regulation of eukaryotic initiation factor (eIF)4E availability by 4E-binding proteins (4E-BPs), and the modulation of the levels of active ternary complex by eIF2α phosphorylation.

  • mRNA-specific translational control is driven by RNA sequences and/or structures that are commonly located in the untranslated regions of the transcript. These features are usually recognized by regulatory proteins or micro RNAs (miRNAs).

  • Quasi-circularization of mRNAs can be mediated by the cap structure and the poly(A) tail via the eIF4E–eIF4G–polyA-binding-protein (PABP) interaction. Such interactions between the 5′ and the 3′ ends of mRNAs could provide a spatial framework for the action of regulatory factors that bind to the 3′ untranslated region (UTR). However, other forms of 5′–3′-end interactions are likely to occur as well.

  • Many regulatory proteins target the stable association of the small ribosomal subunit with the mRNA. These factors function by steric hindrance (for example, iron-regulatory protein; IRP), by interfering with the eIF4F complex (for example, Maskin, Bicoid, Cup) or by as-yet-unknown, distinct mechanisms to control translation initiation (sex-lethal; SXL).

  • Other regulatory molecules modulate the joining of the large ribosomal subunit (hnRNP K and E1) or, potentially, post-initiation translation steps (miRNAs).

  • General translation factors can regulate the expression of specific mRNAs. An illustrative example is the stimulation of translation of the mRNA that encodes the GCN4 transcriptional activator by eIF2α phosphorylation.

Abstract

Translational control is widely used to regulate gene expression. This mode of regulation is especially relevant in situations where transcription is silent or when local control over protein accumulation is required. Although many examples of translational regulation have been described, only a few are beginning to be mechanistically understood. Instead of providing a comprehensive account of the examples that are known at present, we discuss instructive cases that serve as paradigms for different modes of translational control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elements that influence translation of mRNA.
Figure 2: Cap-mediated translation initiation.
Figure 3: Global control of protein synthesis.
Figure 4: Mechanisms of mRNA-specific regulation of 40S ribosomal subunit association.
Figure 5: Mechanisms of regulation at post-recruitment steps.
Figure 6: Translational control by micro RNAs.

Similar content being viewed by others

References

  1. Kuersten, S. & Goodwin, E. B. The power of the 3′ UTR: translational control and development. Nature Rev. Genet. 4, 626–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Wickens, M., Goodwin, E., Kimble. J., Strickland S. & Hentze, M. in Translational control of gene expression (eds Sonenberg, N., Hershey, J. W. & Mathews, B. M. B.) 295 (Cold Spring Harbour Laboratory Press, New York, USA, 2000).

    Google Scholar 

  3. Johnstone, O. & Lasko, P. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu. Rev. Genet. 35, 365–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hershey, J. W. B. & Merrick, W. C. in Translational control of gene expression (eds Sonenberg, N., Hershey, J. W. & Mathews, B. M. B.) 33 (Cold Spring Harbour Laboratory Press, New York, USA, 2000).

    Google Scholar 

  5. Pestova, T. V. et al. Molecular mechanisms of translation initiation in eukaryotes. Proc. Natl Acad. Sci. USA 98, 7029–7036 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Preiss, T. & Hentze, M. W. Starting the protein synthesis machine: eukaryotic translation initiation. Bioessays 25, 1201–1211 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Lamphear, B. J., Kirchweger, R., Skern, T. & Rhoads R. E. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. J. Biol. Chem. 270, 21975–21983 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Asano, K. et al. Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. EMBO J. 20, 2326–2337 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wells, S. E., Hillner, P. E., Vale, R. D. & Sachs, A. B. Circularisation of mRNA by eukaryotic translation initiation factors. Mol. Cell 2, 135–140 (1998). The authors visualize the circularization of capped and polyadenylated RNA mediated by eIF4E, eIF4G and PABP by atomic force microscopy, and provide the first detailed example of molecular interactions that enable 5′–3′-end communication of mRNAs.

    Article  CAS  PubMed  Google Scholar 

  10. Kozak, M. Pushing the limits of the scanning mechanism for initiation of translation. Gene 299, 1–34 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pestova, T. V. & Kolupaeva, V. G. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16, 2906–2922 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pestova, T. V., Borukhov, S. I. & Hellen, C. U. T. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394, 854–859 (1998). Defines the role of eIF1 and eIF1A in translation initiation using a reconstituted translation-initiation system with highly purified factors and a reverse-transcription-based toe-printing assay.

    Article  CAS  PubMed  Google Scholar 

  13. Pestova, T. V. et al. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403, 332–335 (2000). Identification of a second GTP-dependent step in 80S ribosome formation, which shows that eIF5B is a ribosome-stimulated GTPase.

    Article  CAS  PubMed  Google Scholar 

  14. Shin, B. S. et al. Uncoupling of initiation factor eIF5B/ IF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell 111, 1015–1025 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Hinnebusch, A. G. in Translational control of gene expression (eds Sonenberg, N., Hershey, J. W. & Mathews, B. M. B.) 185 (Cold Spring Harbour Laboratory Press, New York, USA, 2000).

    Google Scholar 

  16. Rowlands, A. G, Panniers, R. & Henshaw, E. C. The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2. J. Biol. Chem. 263, 5526–5533 (1988).

    CAS  PubMed  Google Scholar 

  17. de Haro, C., Mendez, R. & Santoyo, J. The eIF-2α kinases and the control of protein synthesis. FASEB J. 10, 1378–1387 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Dever, T. E. Gene-specific regulation by general translation factors. Cell 108, 545–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Gingras, A. C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Pause, A. et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of 5′ cap function. Nature 371, 762–767 (1994). Reports the discovery of a new class of global translational regulators — the 4E-BPs.

    Article  CAS  PubMed  Google Scholar 

  21. Bushell, M. et al. Cleavage of polypeptide chain initiation factor eIF4GI during apoptosis in lymphoma cells: characterisation of an internal fragment generated by caspase-3-mediated cleavage. Cell Death Differ. 7, 628–636 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Marissen, W. E., Triyoso, D., Younan, P. & Lloyd, R. E. Degradation of poly(A)-binding protein in apoptotic cells and linkage to translation regulation. Apoptosis 9, 67–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Schneider, R. J. & Mohr, I. Translation initiation and viral tricks. Trends Biochem. Sci. 28, 130–136 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Gray, N. K. & Hentze, M. W. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J. 13, 3882–3891 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muckenthaler, M., Gray, N. K. & Hentze, M. W. IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol. Cell 2, 383–388 (1998). Molecular explanation of translational regulation by the IRE/IRP system by showing that eIF4F bound to the cap structure fails to form the subsequent bridging interactions to recruit the small ribosomal subunit when IRP is bound to the IRE.

    Article  CAS  PubMed  Google Scholar 

  26. Goossen, B., Caughman, S. W., Harford, J. B., Klausner, R. D. & Hentze, M. W. Translational repression by a complex between the iron-responsive element of ferritin mRNA and its specific cytoplasmic binding protein is position-dependent in vivo. EMBO J. 9, 4127–4133 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paraskeva, E., Gray, N. K., Schlager, B., Wehr, K. & Hentze, M. W. Ribosomal pausing and scanning arrest as mechanisms of translational regulation from cap-distal iron-responsive elements. Mol. Cell. Biol. 19, 807–816 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stripecke, R., Oliveira, C. C., McCarthy, J. E. & Hentze, M. W. Proteins binding to 5′ untranslated region sites: a general mechanism for translational regulation of mRNAs in human and yeast cells. Mol. Cell. Biol. 14, 5898–5909 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mendez, R. & Richter, J. D. Translational control by CPEB: a means to the end. Nature Rev. Mol. Cell Biol. 2, 521–529 (2001).

    Article  CAS  Google Scholar 

  30. Stebbins-Boaz, B., Cao, Q., de Moor, C. H., Mendez, R. & Richter, J. D. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol. Cell 4, 1017–1027 (1999). Reports the identification of the first 'message-specific' 4E-BP.

    Article  CAS  PubMed  Google Scholar 

  31. Nelson, M. R., Leidal, A. M. & Smibert, C. A. Drosophila Cup is an eIF4E binding protein that functions in Smaug-mediated translational repression. EMBO J. 23, 150–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Wilhelm, J. E., Hilton, M., Amos, Q. & Henzel, W. J. Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz. J. Cell Biol. 163, 1197–1204 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakamura, A., Sato, K. & Hanyu-Nakamura, K. Drosophila Cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev. Cell 6, 69–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Clark, I. E., Wyckoff, D. & Gavis, E. R. Synthesis of the posterior determinant Nanos is spatially restricted by a novel cotranslational regulatory mechanism. Curr. Biol. 10, 1311–1314 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Niessing, D., Blanke, S. & Jackle, H. Bicoid associates with the 5′-cap-bound complex of caudal mRNA and represses translation. Genes Dev. 16, 2576–2582 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gebauer, F., Grskovic, M. & Hentze, M. W. Drosophila sex-lethal inhibits the stable association of the 40S ribosomal subunit with msl-2 mRNA. Mol. Cell 11, 1397–1404 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Grskovic, M., Hentze, M. W. & Gebauer, F. A co-repressor assembly nucleated by Sex-lethal in the 3′ UTR mediates translational control of Drosophila msl-2mRNA. EMBO J. 22, 5571–5581 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gebauer, F., Corona, D. F., Preiss, T., Becker, P. B. & Hentze, M. W. Translational control of dosage compensation in Drosophila by Sex-lethal: cooperative silencing via the 5′ and 3′ UTRs of msl-2 mRNA is independent of the poly(A) tail. EMBO J. 18, 6146–6154 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mazumder, B. & Fox, P. L. Delayed translational silencing of ceruloplasmin transcript in γ-interferon-activated U937 monocytic cells: role of the 3′ untranslated region. Mol. Cell. Biol. 19, 6898–6905 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sampath, P., Mazumder, B., Seshadri, V. & Fox, P. L. Transcript-selective translational silencing by γ-interferon is directed by a novel structural element in the ceruloplasmin mRNA 3′ untranslated region. Mol. Cell. Biol. 23, 1509–1519 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mazumder, B. et al. Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control. Cell 115, 187–198 (2003). Reports a new role for a ribosomal protein in mRNA-specific translational control.

    Article  CAS  PubMed  Google Scholar 

  42. Mazumder, B., Seshadri, V., Imataka, H., Sonenberg, N. & Fox, P. L. Translational silencing of ceruloplasmin requires the essential elements of mRNA circularization: poly(A) tail, poly(A)-binding protein, and eukaryotic translation initiation factor 4G. Mol. Cell. Biol. 21, 6440–6449 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ostareck, D. H. et al. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell 89, 597–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Ostareck, D. H., Ostareck-Lederer, A., Shatsky, I. N. & Hentze, M. W. Lipoxygenase mRNA silencing in erythroid differentiation: the 3′ UTR regulatory complex controls 60S ribosomal subunit joining. Cell 104, 281–290 (2001). Identifies 60S ribosomal subunit joining as a regulated step in translation and shows that hnRNP K and E1 inhibit lipoxygenase mRNA translation by a mechanism that probably involves interference with one or more translation-initiation factors.

    Article  CAS  PubMed  Google Scholar 

  45. Hinnebusch, A. G. Translational regulation of yeast GCN4. A window on factors that control initiator-tRNA binding to the ribosome. J. Biol. Chem. 272, 21661–21664 (1997). An excellent summary of one of the most intensively studied models of translational control in eukaryotes.

    Article  CAS  PubMed  Google Scholar 

  46. Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993). References 47 and 48 are the first reports of a regulatory miRNA.

    Article  CAS  PubMed  Google Scholar 

  48. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Carrington, J. C. & Ambros, V. Role of microRNAs in plant and animal development. Science 301, 336–338 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Ambros, V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113, 673–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila microRNA targets. PLoS Biol. 1, 397–409 (2003).

    Article  CAS  Google Scholar 

  52. Enright, A. J. et al. MicroRNA targets in Drosophila. Genome Biol. 5, R1 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zamore, P. D. Ancient pathways programmed by small RNAs. Science 296, 1265–1269 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002). Shows that the degree of complementarity between the miRNA and the target mRNA critically influences whether an mRNA is subject to degradation or translational repression.

    Article  CAS  PubMed  Google Scholar 

  55. Zeng, Y., Yi, R. & Cullen, B. R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl Acad. Sci. USA 19, 9779–9784 (2003).

    Article  Google Scholar 

  56. Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720–728 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Seggerson, K., Tang, L. & Moss, E. G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol. 243, 215–225 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Bernstein, E., Caudy, A. A., Hammond, S. M., Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Valcárcel and R. Cuesta for carefully reading this manuscript. F.G. is supported by grants from La Caixa Foundation and the Spanish Ministry of Science and Technology. M.W.H. gratefully acknowledges support from the Deutsche Forschungsgemeinschaft, the European Union and the Human Frontiers in Science Program.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

let-7

lin-4

LOX

Flybase

Cup

Nanos

Oskar

Sxl

Swiss-Prot

Dicer

eIF1

eIF1A

eIF2α

eIF2β

eIF2γ

eIF4A

eIF4E

eIF4G

eIF5

eIF5B

hnRNP E1

hnRNP K

IRP1

IRP2

PABP

ribosomal protein L13a

Glossary

MICRO RNA

A non-coding RNA molecule of 21–23 nucleotides that inhibits mRNA expression.

CAP STRUCTURE

A structure, which consists of m7GpppN (where m7G represents 7-methylguanylate, p represents a phosphate group and N represents any base), that is located at the 5′ end of eukaryotic mRNAs.

POLY(A) TAIL

A homopolymeric stretch of usually 25–200 adenine nucleotides that is present at the 3′ end of most eukaryotic mRNAs.

INTERNAL RIBOSOME–ENTRY SEQUENCE

(IRES). A structure that is located in the 5′ UTR or open reading frame of some mRNAs of cellular or viral origin. It mediates translation initiation independently of the cap structure by recruiting the ribosome directly to an internal position of the mRNA.

UPSTREAM OPEN READING FRAME

(uORF). A small open reading frame that is located in the 5′ UTR of some mRNAs.

PSEUDOKNOT

A RNA tertiary structure that is formed when the single-stranded loop in a hairpin structure base pairs with a complementary sequence outside of the hairpin.

EUKARYOTIC INITIATION FACTOR

(eIF). A protein that mediates translation initiation on bulk mRNA.

DEAD-BOX RNA HELICASE

An enzyme that unwinds RNA duplexes and contains the evolutionarily conserved motif DEAD (Asp-Glu-Ala-Asp) in the helicase core region.

SCAFFOLD PROTEIN

A protein that serves as a platform for the assembly of other proteins.

4E-BINDING PROTEIN

(4E-BP). A protein that interacts with the cap-binding protein eIF4E and inhibits its association with eIF4G.

POLYSOME

A string of multiple 80S ribosomes bound to an mRNA molecule.

X-CHROMOSOME DOSAGE COMPENSATION

A process that balances the expression levels of X-linked genes in those organisms in which males and females contain a different number of X chromosomes.

LARGE RIBOSOMAL SUBUNIT PROTEIN L13A

A structural protein that binds to the outer surface of the large (60S) ribosomal subunit.

CERULOPLASMIN

A glycoprotein secreted by the liver that oxidizes Fe2+ to Fe3+.

RNase III

A family of endoribonucleases that cleave double-stranded RNA and have an important role in the maturation of ribosomal RNA, among other processes.

MESSENGER RIBONUCLEOPROTEIN

(mRNP). A messenger RNA that is associated with proteins and that often represents translationally inactive (non-polysomal) mRNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebauer, F., Hentze, M. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5, 827–835 (2004). https://doi.org/10.1038/nrm1488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing