Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional imaging of magnetic fields with polarized neutrons

Abstract

Neutrons are highly sensitive to magnetic fields owing to their magnetic moment, whereas their charge neutrality enables them to penetrate even massive samples. The combination of these properties with radiographic and tomographic imaging1,2,3,4 enables a technique that is unique for investigations of macroscopic magnetic phenomena inside solid materials. Here, we introduce a new experimental method yielding two- and three-dimensional images that represent changes of the quantum-mechanical spin state of neutrons caused by magnetic fields in and around bulk objects. It opens up a way to the detection and imaging of previously inaccessible magnetic field distributions, hence closing the gap between high-resolution two-dimensional techniques for surface magnetism5,6 and scattering techniques for the investigation of bulk magnetism7,8,9. The technique was used to investigate quantum effects inside a massive sample of lead (a type-I superconductor).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin-polarized neutron imaging.
Figure 2: Comparison of experimental and calculated images obtained by polarized neutron radiography of a cylindrical coil driven with various currents.
Figure 3: Visualization of magnetic fields with polarized neutrons.

Similar content being viewed by others

References

  1. Schillinger, B., Lehmann, E. & Vontobel, P. 3D neutron computed tomography: Requirements and applications. Physica B 276, 59–62 (2000).

    Article  ADS  Google Scholar 

  2. Pfeiffer, F. et al. Neutron phase imaging and tomography. Phys. Rev. Lett. 96, 215505 (2006).

    Article  ADS  Google Scholar 

  3. Allman, B. E. et al. Phase radiography with neutrons. Nature 408, 158–159 (2000).

    Article  ADS  Google Scholar 

  4. Treimer, W. et al. Absorption—and phase-based imaging signals for neutron tomography. Adv. Solid State Phys. 45, 407–420 (2005).

    Article  Google Scholar 

  5. Freeman, M. R. & Choi, B. C. Advances in magnetic microscopy. Science 294, 1484–1488 (2001).

    Article  ADS  Google Scholar 

  6. Zhu, Y. & de Graef, M. Magnetic Imaging and Its Applications to Materials: Vol. 36 (Experimental Methods in the Physical Sciences) (Academic, London, 2000).

    Google Scholar 

  7. Lake, B. et al. Spins in the vortices of a high-temperature superconductor. Science 291, 1759–1762 (2001).

    Article  ADS  Google Scholar 

  8. Coldea, R. et al. Direct measurement of the spin Hamiltonian and observation of condensation of magnons in the 2D frustrated quantum magnet Cs2CuCl4 . Phys. Rev. Lett. 88, 137203 (2002).

    Article  ADS  Google Scholar 

  9. Brandstätter, G. et al. Neutron diffraction by the flux line lattice in YBa2Cu3O7−δ single crystals. J. Appl. Crystallogr. 30, 571–574 (1997).

    Article  Google Scholar 

  10. de Broglie, L. Waves and quanta. Nature 112, 540 (1923).

    Article  ADS  Google Scholar 

  11. Rauch, H., Treimer, W. & Bonse, U. Test of a single crystal neutron interferometer. Phys. Lett. A 47, 369–371 (1974).

    Article  ADS  Google Scholar 

  12. Schlenker, M., Bauspiess, W., Graeff, W., Bonse, U. & Rauch, H. Imaging of ferromagnetic domains by neutron interferometry. J. Magn. Magn. Mater. 15–18, 1507–1509 (1980).

    Article  ADS  Google Scholar 

  13. Zawisky, M., Bonse, U., Dubus, F., Hradil, Z. & Rehacek, J. Neutron phase contrast tomography on isotope mixtures. Europhys. Lett. 68, 337–343 (2004).

    Article  ADS  Google Scholar 

  14. Rauch, H. & Werner, S. A. Neutron Interferometry (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  15. Treimer, W., Strobl, M., Hilger, A., Seifert, C. & Feye-Treimer, U. Refraction as imaging signal for computerized neutron tomography. Appl. Phys. Lett. 83, 398–400 (2003).

    Article  ADS  Google Scholar 

  16. Williams, W. G. Polarized Neutrons (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  17. Mezei, F. Neutron spin echo: A new concept in polarized thermal neutron technique. Z. Phys. 255, 146–160 (1972).

    Article  ADS  Google Scholar 

  18. Badurek, G., Hochhold, M. & Leeb, H. Neutron magnetic tomography—A novel technique. Physica B 234–236, 1171–1173 (1997).

    Article  ADS  Google Scholar 

  19. Jericha, E., Szeywerth, R., Leeb, H. & Badurek, G. Reconstruction techniques for tensorial neutron tomography. Physica B 397, 159–161 (2007).

    Article  ADS  Google Scholar 

  20. Krist, Th., Kennedy, S. J., Hick, T. J. & Mezei, F. New compact neutron polarizer. Physica B 241–243, 82–85 (1998).

    ADS  Google Scholar 

  21. Gammel, P. & Bishop, D. Fingerprinting vortices with smoke. Science 279, 410–411 (1998).

    Article  Google Scholar 

  22. Jooss, Ch., Albrecht, J., Kuhn, H., Leonhardt, S. & Kronmüller, H. Magneto-optical studies of current distributions in high-Tc superconductors. Rep. Prog. Phys. 65, 651–788 (2002).

    Article  ADS  Google Scholar 

  23. Johansen, T. H., Bratsberg, H. & Lothe, J. Flux-pinning-induced magnetostriction in cylindrical superconductors. Supercond. Sci. Technol. 11, 1186–1189 (1998).

    Article  ADS  Google Scholar 

  24. Herman, G. T. Image Reconstruction from Projections: The Fundamentals of Computerized Tomography (Academic, New York, 1980).

    MATH  Google Scholar 

  25. Hilger, A., Kardjilov, N., Strobl, M., Treimer, W. & Banhart, J. The new cold neutron radiography and tomography instrument CONRAD at HMI Berlin. Physica B 385–386, 1213–1215 (2006).

    Article  ADS  Google Scholar 

  26. Treimer, W., Strobl, M., Kardjilov, N., Hilger, A. & Manke, I. Wavelength tunable device for neutron radiography and tomography. Appl. Phys. Lett. 89, 203504 (2006).

    Article  ADS  Google Scholar 

  27. Grünzweig, C., Frei, G., Lehmann, E., Kühne, G. & David, C. Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems. Rev. Sci. Instrum. 78, 053708 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank B. Lake for helpful comments and D. Wallacher for experimental support.

Author information

Authors and Affiliations

Authors

Contributions

N.K., I.M., M.S. and A.H. contributed equally to this work.

Corresponding author

Correspondence to Nikolay Kardjilov.

Supplementary information

Supplementary Information

Supplementary Figures 1–5 (PDF 2020 kb)

Supplementary Information

Supplementary Movie 1 (MOV 799 kb)

Supplementary Information

Supplementary Movie 2 (MOV 637 kb)

Supplementary Information

Supplementary Movie 3 (MOV 458 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kardjilov, N., Manke, I., Strobl, M. et al. Three-dimensional imaging of magnetic fields with polarized neutrons. Nature Phys 4, 399–403 (2008). https://doi.org/10.1038/nphys912

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys912

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing