Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T memory stem cells in health and disease

Abstract

T memory stem (TSCM) cells are a rare subset of memory lymphocytes endowed with the stem cell–like ability to self-renew and the multipotent capacity to reconstitute the entire spectrum of memory and effector T cell subsets. Cumulative evidence in mice, nonhuman primates and humans indicates that TSCM cells are minimally differentiated cells at the apex of the hierarchical system of memory T lymphocytes. Here we describe emerging findings demonstrating that TSCM cells, owing to their extreme longevity and robust potential for immune reconstitution, are central players in many physiological and pathological human processes. We also discuss how TSCM cell stemness could be leveraged therapeutically to enhance the efficacy of vaccines and adoptive T cell therapies for cancer and infectious diseases or, conversely, how it could be disrupted to treat TSCM cell driven and sustained diseases, such as autoimmunity, adult T cell leukemia and HIV-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T cell stemness and TSCM cells: milestones and key discoveries.
Figure 2: Hierarchical model of human T cell differentiation.
Figure 3: TSCM-cell-based therapeutic interventions for human diseases.

Similar content being viewed by others

References

  1. Thucydides & Hobbes, T. Peloponnesian Warre (Charles Harper, London, 1676).

    Google Scholar 

  2. Sallusto, F., Lanzavecchia, A., Araki, K. & Ahmed, R. From vaccines to memory and back. Immunity 33, 451–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ahmed, R., Bevan, M.J., Reiner, S.L. & Fearon, D.T. The precursors of memory: models and controversies. Nat. Rev. Immunol. 9, 662–668 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Restifo, N.P. & Gattinoni, L. Lineage relationship of effector and memory T cells. Curr. Opin. Immunol. 25, 556–563 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Demkowicz, W.E. Jr., Littaua, R.A., Wang, J. & Ennis, F.A. Human cytotoxic T-cell memory: long-lived responses to vaccinia virus. J. Virol. 70, 2627–2631 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hammarlund, E. et al. Duration of antiviral immunity after smallpox vaccination. Nat. Med. 9, 1131–1137 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Fearon, D.T., Manders, P. & Wagner, S.D. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293, 248–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Luckey, C.J. et al. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 103, 3304–3309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ciocca, M.L., Barnett, B.E., Burkhardt, J.K., Chang, J.T. & Reiner, S.L. Cutting edge: Asymmetric memory T cell division in response to rechallenge. J. Immunol. 188, 4145–4148 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Gattinoni, L., Klebanoff, C.A. & Restifo, N.P. Paths to stemness: building the ultimate antitumour T cell. Nat. Rev. Cancer 12, 671–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chattopadhyay, P.K., Gierahn, T.M., Roederer, M. & Love, J.C. Single-cell technologies for monitoring immune systems. Nat. Immunol. 15, 128–135 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407–1418 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y., Joe, G., Hexner, E., Zhu, J. & Emerson, S.G. Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat. Med. 11, 1299–1305 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Long, H.M. et al. MHC II tetramers visualize human CD4+ T cell responses to Epstein-Barr virus infection and demonstrate atypical kinetics of the nuclear antigen EBNA1 response. J. Exp. Med. 210, 933–949 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miller, J.D. et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28, 710–722 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Akondy, R.S. et al. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J. Immunol. 183, 7919–7930 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15, 808–813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lugli, E. et al. Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat. Protoc. 8, 33–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Di Benedetto, S. et al. Impact of age, sex and CMV-infection on peripheral T cell phenotypes: results from the Berlin BASE-II Study. Biogerontology 16, 631–643 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Roederer, M. et al. The genetic architecture of the human immune system: a bioresource for autoimmunity and disease pathogenesis. Cell 161, 387–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cieri, N. et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 121, 573–584 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Lugli, E. et al. Superior T memory stem cell persistence supports long-lived T cell memory. J. Clin. Invest. 123, 594–599 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Simons, B.D. & Clevers, H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145, 851–862 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Graef, P. et al. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8+ central memory T cells. Immunity 41, 116–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Gattinoni, L. Memory T cells officially join the stem cell club. Immunity 41, 7–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gerlach, C. et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340, 635–639 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Buchholz, V.R. et al. Disparate individual fates compose robust CD8+ T cell immunity. Science 340, 630–635 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2, 982–987 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Joshi, N.S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cieri, N. et al. Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation. Blood 125, 2865–2874 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Roberto, A. et al. Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation. Blood 125, 2855–2864 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oliveira, G. et al. Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory. Sci. Transl. Med. 7, 317ra198 (2015).

    PubMed  Google Scholar 

  36. Fuertes Marraco, S.A. et al. Long-lasting stem cell-like memory CD8+ T cells with a naive-like profile upon yellow fever vaccination. Sci. Transl. Med. 7, 282ra48 (2015).

    Article  PubMed  CAS  Google Scholar 

  37. Fuertes Marraco, S.A., Soneson, C., Delorenzi, M. & Speiser, D.E. Genome-wide RNA profiling of long-lasting stem cell-like memory CD8 T cells induced by Yellow Fever vaccination in humans. Genom. Data 5, 297–301 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Biasco, L. et al. In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Sci. Transl. Med. 7, 273ra13 (2015).

    Article  PubMed  CAS  Google Scholar 

  39. Xu, Y. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123, 3750–3759 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vigano, S. et al. Prolonged antiretroviral therapy preserves HIV-1-specific CD8 T cells with stem cell-like properties. J. Virol. 89, 7829–7840 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Axelsson-Robertson, R., Ju, J.H., Kim, H.Y., Zumla, A. & Maeurer, M. Mycobacterium tuberculosis-specific and MHC class I-restricted CD8+ T-cells exhibit a stem cell precursor-like phenotype in patients with active pulmonary tuberculosis. Int. J. Infect. Dis. 32, 13–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Mateus, J. et al. Low frequency of circulating CD8+ T stem cell memory cells in chronic chagasic patients with severe forms of the disease. PLoS Negl. Trop. Dis. 9, e3432 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ahmed, R. & Akondy, R.S. Insights into human CD8+ T-cell memory using the yellow fever and smallpox vaccines. Immunol. Cell Biol. 89, 340–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Speiser, D.E. et al. T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion? Nat. Rev. Immunol. 14, 768–774 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Utzschneider, D.T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Im, S.J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu, T. et al. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. http://dx.doi.org/10.1126/sciimmunol.aai8593 (2016).

  48. Ribeiro, S.P. et al. The CD8+ memory stem T cell (T(SCM)) subset is associated with improved prognosis in chronic HIV-1 infection. J. Virol. 88, 13836–13844 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cartwright, E.K. et al. Divergent CD4+ T memory stem cell dynamics in pathogenic and nonpathogenic simian immunodeficiency virus infections. J. Immunol. 192, 4666–4673 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Klatt, N.R. et al. Limited HIV infection of central memory and stem cell memory CD4+ T cells is associated with lack of progression in viremic individuals. PLoS Pathog. 10, e1004345 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Cartwright, E.K. et al. Initiation of antiretroviral therapy restores CD4+ TSCM homeostasis in SIV-infected macaques. J. Virol. 90, 6699–6708 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Calascibetta, F. et al. Antiretroviral therapy in simian immunodeficiency virus-infected sooty mangabeys: implications for AIDS pathogenesis. J. Virol. 90, 7541–7551 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Speiser, D.E. et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest. 115, 739–746 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Melero, I. et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol. 11, 509–524 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. De Gregorio, E. & Rappuoli, R. Vaccines for the future: learning from human immunology. Microb. Biotechnol. 5, 149–155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chang, J.T., Wherry, E.J. & Goldrath, A.W. Molecular regulation of effector and memory T cell differentiation. Nat. Immunol. 15, 1104–1115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pham, N.L., Badovinac, V.P. & Harty, J.T. A default pathway of memory CD8 T cell differentiation after dendritic cell immunization is deflected by encounter with inflammatory cytokines during antigen-driven proliferation. J. Immunol. 183, 2337–2348 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Gannon, P. et al. Rapid and continued T cell differentiation into long-term effector and memory stem cells in vaccinated melanoma patients. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432.CCR-16-1708 (2016).

  59. Park, C.O. & Kupper, T.S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med. 21, 688–697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mackay, L.K. et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, N. & Bevan, M.J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Jameson, S.C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Farber, D.L., Yudanin, N.A. & Restifo, N.P. Human memory T cells: generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 14, 24–35 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Gattinoni, L. The dark side of T memory stem cells. Blood 125, 3519–3520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hosokawa, K. et al. Memory stem T cells in autoimmune disease: high frequency of circulating CD8+ memory stem cells in acquired aplastic anemia. J. Immunol. 196, 1568–1578 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Monti, P., Heninger, A.K. & Bonifacio, E. Differentiation, expansion, and homeostasis of autoreactive T cells in type 1 diabetes mellitus. Curr. Diab. Rep. 9, 113–118 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Tabler, C.O. et al. CD4+ memory stem cells are infected by HIV-1 in a manner regulated in part by SAMHD1 expression. J. Virol. 88, 4976–4986 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Buzon, M.J. et al. HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat. Med. 20, 139–142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jaafoura, S. et al. Progressive contraction of the latent HIV reservoir around a core of less-differentiated CD4+ memory T cells. Nat. Commun. 5, 5407 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Nagai, Y. et al. T memory stem cells are the hierarchical apex of adult T-cell leukemia. Blood 125, 3527–3535 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Rosenberg, S.A. & Restifo, N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. June, C.H., Riddell, S.R. & Schumacher, T.N. Adoptive cellular therapy: a race to the finish line. Sci. Transl. Med. 7, 280ps7 (2015).

    Article  PubMed  CAS  Google Scholar 

  73. Dudley, M.E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brentjens, R.J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra38 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Lee, D.W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Kochenderfer, J.N. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33, 540–549 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Brudno, J.N. et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J. Clin. Oncol. 34, 1112–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Maude, S.L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Porter, D.L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7, 303ra139 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Robbins, P.F. et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21, 1019–1027 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Robbins, P.F. et al. Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J. Immunol. 173, 7125–7130 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Pule, M.A. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rosenberg, S.A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stevanovic´, S. et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J. Clin. Oncol. 33, 1543–1550 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Turtle, C.J. et al. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 8, 355ra116 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Busch, D.H., Fräßle, S.P., Sommermeyer, D., Buchholz, V.R. & Riddell, S.R. Role of memory T cell subsets for adoptive immunotherapy. Semin. Immunol. 28, 28–34 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou, J. et al. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J. Immunol. 175, 7046–7052 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Huang, J. et al. Modulation by IL-2 of CD70 and CD27 expression on CD8+ T cells: importance for the therapeutic effectiveness of cell transfer immunotherapy. J. Immunol. 176, 7726–7735 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Louis, C.U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Klebanoff, C.A. et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc. Natl. Acad. Sci. USA 102, 9571–9576 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hinrichs, C.S. et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc. Natl. Acad. Sci. USA 106, 17469–17474 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, X. et al. Comparison of naive and central memory derived CD8+ effector cell engraftment fitness and function following adoptive transfer. OncoImmunology 5, e1072671 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30, 492–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Klebanoff, C.A. et al. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin. Cancer Res. 17, 5343–5352 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Berger, C. et al. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Invest. 118, 294–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Baitsch, L. et al. Exhaustion of tumor-specific CD8 T cells in metastases from melanoma patients. J. Clin. Invest. 121, 2350–2360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gros, A. et al. PD-1 identifies the patient-specific CD8 tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lugli, E. et al. Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data. Cytometry A 71, 334–344 (2007).

    Article  PubMed  CAS  Google Scholar 

  101. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 8, 379–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Mackall, C.L. et al. Distinctions between CD8+ and CD4+ T-cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood 89, 3700–3707 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Singh, N., Perazzelli, J., Grupp, S.A. & Barrett, D.M. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci. Transl. Med. 8, 320ra3 (2016).

    PubMed  Google Scholar 

  104. Turtle, C.J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wang, X. et al. Phase 1 studies of central-memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL. Blood 24, 2980–2990 (2016).

    Article  CAS  Google Scholar 

  106. Li, Q. et al. A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity. Immunity 34, 541–553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hinrichs, C.S. et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111, 5326–5333 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. van der Waart, A.B. et al. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood 124, 3490–3500 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Crompton, J.G. et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 75, 296–305 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Gattinoni, L., Klebanoff, C.A. & Restifo, N.P. Pharmacologic induction of CD8+ T cell memory: better living through chemistry. Sci. Transl. Med. 1, 11ps12 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Davila, M.L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Grupp, S.A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sabatino, M. et al. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood 128, 519–528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Klebanoff, C.A. et al. Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy. J. Clin. Invest. 126, 318–334 (2016).

    Article  PubMed  Google Scholar 

  115. Klebanoff, C.A., Gattinoni, L. & Restifo, N.P. Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy? J. Immunother. 35, 651–660 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ding, Z.C. et al. IL-7 signaling imparts polyfunctionality and stemness potential to CD4+ T cells. OncoImmunology 5, e1171445 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Provasi, E. et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat. Med. 18, 807–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Stemberger, C. et al. Lowest numbers of primary CD8+ T cells can reconstitute protective immunity upon adoptive immunotherapy. Blood 124, 628–637 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Schmueck-Henneresse, M. et al. Peripheral blood-derived virus-specific memory stem T cells mature to functional effector memory subsets with self-renewal potency. J. Immunol. 194, 5559–5567 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Terakura, S. et al. Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood 119, 72–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Becker, T.C. et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med. 195, 1541–1548 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schluns, K.S., Williams, K., Ma, A., Zheng, X.X. & Lefrançois, L. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J. Immunol. 168, 4827–4831 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Yi, J.S., Du, M. & Zajac, A.J. A vital role for interleukin-21 in the control of a chronic viral infection. Science 324, 1572–1576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fröhlich, A. et al. IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324, 1576–1580 (2009).

    Article  PubMed  CAS  Google Scholar 

  125. Yi, J.S., Ingram, J.T. & Zajac, A.J. IL-21 deficiency influences CD8 T cell quality and recall responses following an acute viral infection. J. Immunol. 185, 4835–4845 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Cui, W., Liu, Y., Weinstein, J.S., Craft, J. & Kaech, S.M. An interleukin-21-interleukin-10-STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity 35, 792–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. van der Windt, G.J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu, L. et al. Novel CD4-based bispecific chimeric antigen receptor designed for enhanced anti-HIV potency and absence of HIV entry receptor activity. J. Virol. 89, 6685–6694 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ali, A. et al. HIV-1-specific chimeric antigen receptors based on broadly neutralizing antibodies. J. Virol. 90, 6999–7006 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gattinoni, L. & Restifo, N.P. Moving T memory stem cells to the clinic. Blood 121, 567–568 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Kahn, M. Can we safely target the WNT pathway? Nat. Rev. Drug Discov. 13, 513–532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ramishetti, S. et al. Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano 9, 6706–6716 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Zhou, J. et al. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res. 37, 3094–3109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dragic, T. et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. Scholz, G. et al. Modulation of mTOR signalling triggers the formation of stem cell-like memory T cells. EBioMedicine 4, 50–61 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Crompton, J.G. et al. Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape. Cell. Mol. Immunol. 13, 502–513 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Chang, J.T. et al. Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division. Immunity 34, 492–504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lin, W.H. et al. Asymmetric PI3K signaling driving developmental and regenerative cell fate bifurcation. Cell Reports 13, 2203–2218 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Verbist, K.C. et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 532, 389–393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pollizzi, K.N. et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T cell differentiation. Nat. Immunol. 17, 704–711 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jeannet, G. et al. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc. Natl. Acad. Sci. USA 107, 9777–9782 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhou, X. et al. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity 33, 229–240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhao, D.M. et al. Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J. Immunol. 184, 1191–1199 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Boudousquié, C. et al. Differences in the transduction of canonical Wnt signals demarcate effector and memory CD8 T cells with distinct recall proliferation capacity. J. Immunol. 193, 2784–2791 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rao, R.R., Li, Q., Odunsi, K. & Shrikant, P.A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression |of transcription factors T-bet and Eomesodermin. Immunity 32, 67–78 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Pearce, E.L., Poffenberger, M.C., Chang, C.H. & Jones, R.G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. van der Windt, G.J. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl. Acad. Sci. USA 110, 14336–14341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sukumar, M. et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab. 23, 63–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Buck, M.D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Morrison, S.J. & Spradling, A.C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Di Rosa, F. Two niches in the bone marrow: a hypothesis on life-long T cell memory. Trends Immunol. 37, 503–512 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Alp, Ö.S. et al. Memory CD8+ T cells colocalize with IL-7+ stromal cells in bone marrow and rest in terms of proliferation and transcription. Eur. J. Immunol. 45, 975–987 (2015).

    Article  CAS  Google Scholar 

  156. Becker, T.C., Coley, S.M., Wherry, E.J. & Ahmed, R. Bone marrow is a preferred site for homeostatic proliferation of memory CD8 T cells. J. Immunol. 174, 1269–1273 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Mazo, I.B. et al. Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22, 259–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Takada, K. & Jameson, S.C. Naive T cell homeostasis: from awareness of space to a sense of place. Nat. Rev. Immunol. 9, 823–832 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the US National Institutes of Health, National Cancer Institute, Center for Cancer Research (ZIABC011480), the 2014 US National Institutes of Health (NIH) Bench-to-Bedside Award, (to L.G.) NIH grants AI098487, AI106468, AI114235, AI117841, AI120008, AI124776 (to M.L.), the Cancer Research Institute (N.Y.), the Ludwig Cancer Research (N.Y.), the Swiss Cancer League (3507-08-2014), the Swiss National Science Foundation (320030_152856, CRSII3_160708), the SwissTransMed (KIP 18) (to D.E.S.), the Italian Association for Cancer Research and the SUPERSIST (EU-FP7 project) (to C.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luca Gattinoni, Daniel E Speiser, Mathias Lichterfeld or Chiara Bonini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gattinoni, L., Speiser, D., Lichterfeld, M. et al. T memory stem cells in health and disease. Nat Med 23, 18–27 (2017). https://doi.org/10.1038/nm.4241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing