Skip to main content
Log in

Bessel light beam for a surgical laser focusing telescope—a novel approach

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

As the demand for CO\(_2\) laser surgeries continues to grow, the quality of their main instrument, the laser micromanipulator, becomes increasingly important. However, in many surgery systems, a large ratio of the laser power is wasted due to the reflection from the mirror of a telescopic system, like a Cassegrain telescope, back to the laser side, which not only decreases the system’s efficiency but can also damage the system itself. In this article, we introduce a new design of the micromanipulator telescope for CO\(_2\) laser surgery, which employs a Bessel beam to improve the system efficiency. As in the propagation of a Bessel beam, the power of the light beam can be transferred from the center to a ring shape, the whole power reflected from the first mirror can reach the second mirror and no power goes back to the second mirror hole. The micromanipulator telescope design and optimization are carried out using Zemax Optics Studio, and the integration of the Bessel beam into the system is implemented using MATLAB. Our simulation results show that by applying the appropriate Bessel beam, the system efficiency can reach more than 96%, and the normalized peak irradiance can increase by 40 to 73% for various working distances. In addition to increasing the system efficiency and normalized peak irradiance, resulting in a sharper surgical blade, the use of the Bessel beam enhances the depth of focus, making the system less sensitive to depth misalignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maiman TH (1960) Stimulated optical radiation in ruby, 187–493

  2. Yan Y, Olszewski AE, Hoffman MR, Zhuang P, Ford CN, Dailey SH, Jiang JJ (2010) Use of lasers in laryngeal surgery. J Voice 24(1):102–109

    Article  PubMed  Google Scholar 

  3. Duncavage JA, Ossoff RH (1990) Laser application in the tracheobronchial tree. Otolaryngol Clin North Am 23(1):67–75

    Article  CAS  PubMed  Google Scholar 

  4. Niemz MH (2019) Laser-tissue interactions. Springer, Cham, Switzerland

    Book  Google Scholar 

  5. Shapshay SM, Wallace RA, Kveton JF, Hybels RL, Bohigian RK, Setzer SE (1988) New microspot micromanipulator for carbon dioxide laser surgery in otolaryngology: early clinical results. Archives of Otolaryngology-Head & Neck Surgery 114(9):1012–1015

    Article  CAS  Google Scholar 

  6. Dagan J, Robertson JH, Clark WC (1983) Microprocessor-controlled scanning micromanipulator for carbon dioxide laser surgery. J Neurosurg 59(6):1098–1099

    Article  CAS  PubMed  Google Scholar 

  7. Ossoff RH, Werkhaven JA, Raif J, Abraham M (1991) Advanced microspot microslad for the CO\(_2\) laser. Otolaryngology Head and Neck Surgery 105(3):411–414

    Article  CAS  PubMed  Google Scholar 

  8. Motta G, Esposito E, Motta S, Tartaro G, Testa D (2005) CO\(_2\) laser surgery in the treatment of glottic cancer. Head & Neck: J Sci Specialties Head Neck 27(7):566–574

    Article  Google Scholar 

  9. Jelínková H (ed) (2013) Lasers for medical applications: diagnostics. Therapy and Surgery, Elsevier, Cambridge, UK

    Google Scholar 

  10. Bellina JH (1983) Lasers in gynecology. World J Surg 7(6):692–699

    Article  CAS  PubMed  Google Scholar 

  11. Pecaro BC, Garehime WJ (1983) The CO\(_2\) laser in oral and maxillofacial surgery. J Oral Maxillofac Surg 41(11):725–728

    Article  CAS  PubMed  Google Scholar 

  12. Ossoff RH, Matar SA (1988) The advantages of laser treatment of tumors of the larynx. Oncology (Williston Park) 2(9):58–61

    CAS  PubMed  Google Scholar 

  13. Ossoff RH, Coleman JA, Courey MS, Duncavage JA, Werkhaven JA, Reinisch L (1994) Clinical applications of lasers in otolaryngology-head and neck surgery. Lasers Surg Med 15(3):217–248

    Article  CAS  PubMed  Google Scholar 

  14. Arroyo HH, Neri L, Fussuma CY, Imamura R (2016) Diode laser for laryngeal surgery: a systematic review. Intern Arch Otorhinolaryngology 20:172–179

    Article  Google Scholar 

  15. Bajaj Y, Pegg D, Gunasekaran S, Knight LC (2010) Diode laser for paediatric airway procedures: a useful tool. Int J Clin Pract 64(1):51–54

    Article  CAS  PubMed  Google Scholar 

  16. Saetti R, Silvestrini M, Cutrone C, Narne S (2008) Treatment of congenital subglottic hemangiomas: our experience compared with reports in the literature. Archives of Otolaryngology-Head & Neck Surgery 134(8):848–851

    Article  Google Scholar 

  17. Chao KKH, Cheung E, Armstrong WB, Wong BJF (2002) The effect of optical design on micromanipulator spot size using CO\(_2\) laser irradiation. Otolaryngology-Head and Neck Surgery 126(6):593–597

    Article  PubMed  Google Scholar 

  18. Thibon L, Lorenzo LE, Piché M, De Koninck Y (2017) Resolution enhancement in confocal microscopy using Bessel-Gauss beams. Opt Express 25(3):2162–2177

    Article  PubMed  Google Scholar 

  19. Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA, Galbraith CG, Betzig E (2011) Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods 8(5):417–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fahrbach FO, Gurchenkov V, Alessandri K, Nassoy P, Rohrbach A (2013) Self-reconstructing sectioned Bessel beams offer submicron optical sectioning for large fields of view in light-sheet microscopy. Opt Express 21(9):11425–11440

    Article  PubMed  Google Scholar 

  21. Snoeyink C (2013) Imaging performance of Bessel beam microscopy. Opt Lett 38(14):2550–2553

    Article  PubMed  Google Scholar 

  22. Gao L, Shao L, Chen B-C, Betzig E (2014) 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nat Protoc 9(5):1083–1101

    Article  CAS  PubMed  Google Scholar 

  23. Zhang P, Goodwin PM, Werner JH (2014) Fast, super resolution imaging via Bessel-beam stimulated emission depletion microscopy. Opt Express 22(10):12398–12409

  24. Li XF, Winfield RJ, O’Brien S, Crean GM (2009) Application of Bessel beams to 2D microfabrication. Appl Surf Sci 255(10):5146–5149

    Article  CAS  Google Scholar 

  25. Matsuoka Y, Kizuka Y, Inoue T (2006) The characteristics of laser micro drilling using a Bessel beam. Appl Phys A 84(4):423–430

    Article  CAS  Google Scholar 

  26. Cabrini S, Liberale C, Cojoc D, Carpentiero A, Prasciolu M, Mora S, Degiorgio V, De Angelis F, Di Fabrizio E (2006) Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling. Microelectron Eng 83(4):804–807

    Article  CAS  Google Scholar 

  27. Li S, Wang J (2017) Adaptive free-space optical communications through turbulence using self-healing Bessel beams. Sci Rep 7:43233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du J, Wang J (2015) High-dimensional structured light coding/decoding for free-space optical communications free of obstructions. Opt Lett 40(21):4827–4830

    Article  CAS  PubMed  Google Scholar 

  29. Aakhte M, Akhlaghi EA, Müller HAJ (2018) SSPIM: a beam shaping toolbox for structured selective plane illumination microscopy. Sci Rep 8(1):10067

    Article  PubMed  PubMed Central  Google Scholar 

  30. Scott G, McArdle N (1992) Efficient generation of nearly diffraction-free beams using an axicon. Opt Eng 31(12):2640–2644

    Article  Google Scholar 

  31. Vasilyeu R, Dudley A, Khilo N, Forbes A (2009) Generating superpositions of higher-order Bessel beams. Opt Express 17(26):23389–23395

    Article  CAS  PubMed  Google Scholar 

  32. Vasara A, Turunen J, Friberg AT (1989) Realization of general nondiffracting beams with computer-generated holograms. J Opt Soc Am A 6(11):1748–1754

    Article  CAS  PubMed  Google Scholar 

  33. Chattrapiban N, Rogers EA, Cofield D, Hill WT III, Roy R (2003) Generation of nondiffracting Bessel beams by use of a spatial light modulator. Opt Lett 28(22):2183–2185

    Article  PubMed  Google Scholar 

  34. Guaña DP, Guerrero RA (2019) A deformable annular slit for generating elliptical Bessel beams. Jpn J Appl Phys 58(6):062002

    Article  Google Scholar 

  35. Chen WT, Khorasaninejad M, Zhu AY, Oh J, Devlin RC, Zaidi A, Capasso F (2017) Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light: Science & Applications 6(5):16259–16259

  36. McGloin D, Dholakia K (2005) Bessel beams: diffraction in a new light. Contemp Phys 46(1):15–28

    Article  Google Scholar 

  37. Kim MK (2011) Digital holographic microscopy, Springer, New York pp 50–51

Download references

Author information

Authors and Affiliations

Authors

Contributions

Not applicable

Corresponding author

Correspondence to Ehsan A. Akhlaghi.

Ethics declarations

Informed consent

Not applicable

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Saber, S.M.A., A. Akhlaghi, E., Saber, A. et al. Bessel light beam for a surgical laser focusing telescope—a novel approach. Lasers Med Sci 39, 33 (2024). https://doi.org/10.1007/s10103-023-03968-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03968-y

Keywords