Skip to main content
Log in

Organization of rhodopsin molecules in native membranes of rod cells–an old theoretical model compared to new experimental data

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

It has been shown that rhodopsin forms an oligomer in the shape of long double rows of monomers. Because of the importance of rhodopsin as a template for all G protein-coupled receptors, its dimeric, tetrameric and higher-oligomeric structures also provide a useful pattern for similar structures in GPCRs. New experimental data published recently are discussed in the context of a proposed model of the rhodopsin oligomer 1N3M deposited in the protein data bank. The new rhodopsin structure at 2.2 Å resolution with all residues resolved as well as an electron cryomicroscopy structure from 2D crystals of rhodopsin are in agreement with the 1N3M model. Accommodation of movement of transmembrane helix VI, regarded as a major event during the activation of rhodopsin, in a steady structure of the oligomer is also discussed.

Figure Superimposition of the 1U19 (red wire), 1GZM (purple wire) and 1N3M (blue wire) rhodopsin structures. Size of the wires is proportional to thermal factors of backbone Cα atoms, view parallel to the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GPCR:

G protein-coupled receptor

PDB:

Protein data bank

TMH:

Transmembrane helix

ROS:

Rod outer segment

ET:

Evolutionary trace

References

  1. Mirzadegan T, Benko G, Filipek S, Palczewski K (2003) Biochemistry 42:2759–2767

    Article  CAS  PubMed  Google Scholar 

  2. Ballesteros J, Palczewski K (2001) Curr Opin Drug Discov Dev 4:561–574

    CAS  Google Scholar 

  3. Bartfai T, Benovic JL, Bockaert J, Bond RA, Bouvier M, Christopoulos A, Civelli O, Devi LA, George SR, Inui A, Kobilka B, Leurs R, Neubig R, Pin JP, Quirion R, Roques BP, Sakmar TP, Seifert R, Stenkamp RE, Strange PG (2004) Nat Rev Drug Discov 3:574–626

    Google Scholar 

  4. Nestler EJ, Landsman D (2001) Nature 409:834–835

    Article  CAS  PubMed  Google Scholar 

  5. Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S (2002) FEBS Lett 520:97–101

    Article  CAS  PubMed  Google Scholar 

  6. Sautel M, Milligan G (2000) Curr Med Chem 7:889–896

    CAS  PubMed  Google Scholar 

  7. Flower DR (1999) Biochim Biophys Acta Rev Biomembr 1422:207–234

    Article  CAS  Google Scholar 

  8. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  9. Filipek S, Teller DC, Palczewski K, Stenkamp R (2003) Annu Rev Biophys Biomol Struct 32:375–397

    Article  CAS  PubMed  Google Scholar 

  10. Ridge KD, Abdulaev NG, Sousa M, Palczewski K (2003) Trends Biochem Sci 28:479–487

    Google Scholar 

  11. Teller DC, Stenkamp RE, Palczewski K (2003) FEBS Lett 555:151–159

    Article  CAS  PubMed  Google Scholar 

  12. Ballesteros JA, Shi L, Javitch JA (2001) Mol Pharmacol 60:1–19

    CAS  PubMed  Google Scholar 

  13. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Nature 421:127–128

    Article  CAS  PubMed  Google Scholar 

  14. Angers S, Salahpour A, Bouvier M (2002) Annu Rev Pharmacol Toxicol 42:409–435

    Article  CAS  PubMed  Google Scholar 

  15. Terrillon S, Bouvier M (2004) EMBO Rep 5:30–34

    Article  CAS  PubMed  Google Scholar 

  16. Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) J Biol Chem 278:21655–21662

    Article  CAS  PubMed  Google Scholar 

  17. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2004) FEBS Lett 564:281–288

    Article  CAS  PubMed  Google Scholar 

  18. Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE (2001) Biochemistry 40:7761–7772

    Article  CAS  PubMed  Google Scholar 

  19. Giusto NM, Pasquare SJ, Salvador GA, Castagnet PI, Roque ME, Ilincheta de Boschero MG (2000) Prog Lipid Res 39:315–391

    Article  CAS  PubMed  Google Scholar 

  20. Saiz L, Klein ML (2001) Biophys J 81:204–216

    CAS  PubMed  Google Scholar 

  21. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) J Comput Phys 151:283–312

    Article  CAS  Google Scholar 

  22. Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) J Mol Biol 342:571–583

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Edwards PC, Burghammer M, Villa C, Schertler GF (2004) J Mol Biol 343:1409–1438

    Article  CAS  PubMed  Google Scholar 

  24. Krebs A, Edwards PC, Villa C, Li JD, Schertler GFX (2003) J Biol Chem 278:50217–50225

    Article  CAS  PubMed  Google Scholar 

  25. Brooijmans N, Sharp KA, Kuntz ID (2002) Proteins 48:645–653

    Article  CAS  PubMed  Google Scholar 

  26. Shoichet BK, Kuntz ID (1996) Chem Biol 3:151–156

    Article  CAS  PubMed  Google Scholar 

  27. Gabb HA, Jackson RM, Sternberg MJE (1997) J Mol Biol 272:106–120

    Article  CAS  PubMed  Google Scholar 

  28. Jackson RM, Gabb HA, Sternberg MJE (1998) J Mol Biol 276:265–285

    Article  CAS  PubMed  Google Scholar 

  29. Duhovny D, Nussinov R, Wolfson HJ (2002) Algorithms Bioinformatics Proc 2452:185–200

    Google Scholar 

  30. Exner TE, Keil M, Brickmann J (2002) J Comput Chem 23:1176–1187

    Article  CAS  PubMed  Google Scholar 

  31. Exner TE, Keil M, Brickmann J (2002) J Comput Chem 23:1188–1197

    Article  CAS  PubMed  Google Scholar 

  32. Lichtarge O, Bourne HR, Cohen FE (1996) J Mol Biol 257:342–358

    CAS  PubMed  Google Scholar 

  33. Madabushi S, Gross AK, Philippi A, Meng EC, Wensel TG, Lichtarge O (2004) J Biol Chem 279:8126–8132

    Article  CAS  PubMed  Google Scholar 

  34. Dean MK, Higgs C, Smith RE, Bywater RP, Snell CR, Scott PD, Upton GJG, Howe TJ, Reynolds CA (2001) J Med Chem 44:4595–4614

    Article  CAS  PubMed  Google Scholar 

  35. Nemoto W, Toh H (2005) Proteins 58:644–660

    Article  CAS  PubMed  Google Scholar 

  36. Guo W, Shi L, Javitch JA (2003) J Biol Chem 278:4385–4388

    Article  CAS  PubMed  Google Scholar 

  37. Lee SP, O’Dowd BF, Rajaram RD, Nguyen T, George SR (2003) Biochemistry 42:11023–11031

    Article  CAS  PubMed  Google Scholar 

  38. Hebert TE, Moffett S, Morello JP, Loisel TP, Bichet DG, Barret C, Bouvier M (1996) J Biol Chem 271:16384–16392

    Article  CAS  PubMed  Google Scholar 

  39. Zeng FY, Wess J (1999) J Biol Chem 274:19487–19497

    Article  CAS  PubMed  Google Scholar 

  40. Vogel R, Ruprecht J, Villa C, Mielke T, Schertler GFX, Siebert F (2004) J Mol Biol 338:597–609

    Article  CAS  PubMed  Google Scholar 

  41. Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GF (2004) EMBO J 23:3609–3620

    Article  CAS  PubMed  Google Scholar 

  42. Altenbach C, Klein-Seetharaman J, Cai KW, Khorana HG, Hubbell WL (2001) Biochemistry 40:15493–15500

    Article  CAS  PubMed  Google Scholar 

  43. Hubbell WL, Altenbach C, Hubbell CM, Khorana HG (2003) Adv Prot Chem 63:243–290

    CAS  Google Scholar 

  44. Filipek S, Krzysko KA, Fotiadis D, Liang Y, Saperstein DA, Engel A, Palczewski K (2004) Photochem Photobiol Sci 3:628–638

    Google Scholar 

Download references

Acknowledgements

This study was supported by funds from Polish State Committee for Scientific Research grant 3P05F02625. Calculations were performed partly in ICM Computer Centre in Warsaw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir Filipek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipek, S. Organization of rhodopsin molecules in native membranes of rod cells–an old theoretical model compared to new experimental data. J Mol Model 11, 385–391 (2005). https://doi.org/10.1007/s00894-005-0268-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0268-3

Keywords