Abstract
It has been shown that rhodopsin forms an oligomer in the shape of long double rows of monomers. Because of the importance of rhodopsin as a template for all G protein-coupled receptors, its dimeric, tetrameric and higher-oligomeric structures also provide a useful pattern for similar structures in GPCRs. New experimental data published recently are discussed in the context of a proposed model of the rhodopsin oligomer 1N3M deposited in the protein data bank. The new rhodopsin structure at 2.2 Å resolution with all residues resolved as well as an electron cryomicroscopy structure from 2D crystals of rhodopsin are in agreement with the 1N3M model. Accommodation of movement of transmembrane helix VI, regarded as a major event during the activation of rhodopsin, in a steady structure of the oligomer is also discussed.
Figure Superimposition of the 1U19 (red wire), 1GZM (purple wire) and 1N3M (blue wire) rhodopsin structures. Size of the wires is proportional to thermal factors of backbone Cα atoms, view parallel to the membrane.





Similar content being viewed by others
Abbreviations
- GPCR:
-
G protein-coupled receptor
- PDB:
-
Protein data bank
- TMH:
-
Transmembrane helix
- ROS:
-
Rod outer segment
- ET:
-
Evolutionary trace
References
Mirzadegan T, Benko G, Filipek S, Palczewski K (2003) Biochemistry 42:2759–2767
Ballesteros J, Palczewski K (2001) Curr Opin Drug Discov Dev 4:561–574
Bartfai T, Benovic JL, Bockaert J, Bond RA, Bouvier M, Christopoulos A, Civelli O, Devi LA, George SR, Inui A, Kobilka B, Leurs R, Neubig R, Pin JP, Quirion R, Roques BP, Sakmar TP, Seifert R, Stenkamp RE, Strange PG (2004) Nat Rev Drug Discov 3:574–626
Nestler EJ, Landsman D (2001) Nature 409:834–835
Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S (2002) FEBS Lett 520:97–101
Sautel M, Milligan G (2000) Curr Med Chem 7:889–896
Flower DR (1999) Biochim Biophys Acta Rev Biomembr 1422:207–234
Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Science 289:739–745
Filipek S, Teller DC, Palczewski K, Stenkamp R (2003) Annu Rev Biophys Biomol Struct 32:375–397
Ridge KD, Abdulaev NG, Sousa M, Palczewski K (2003) Trends Biochem Sci 28:479–487
Teller DC, Stenkamp RE, Palczewski K (2003) FEBS Lett 555:151–159
Ballesteros JA, Shi L, Javitch JA (2001) Mol Pharmacol 60:1–19
Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Nature 421:127–128
Angers S, Salahpour A, Bouvier M (2002) Annu Rev Pharmacol Toxicol 42:409–435
Terrillon S, Bouvier M (2004) EMBO Rep 5:30–34
Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) J Biol Chem 278:21655–21662
Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2004) FEBS Lett 564:281–288
Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE (2001) Biochemistry 40:7761–7772
Giusto NM, Pasquare SJ, Salvador GA, Castagnet PI, Roque ME, Ilincheta de Boschero MG (2000) Prog Lipid Res 39:315–391
Saiz L, Klein ML (2001) Biophys J 81:204–216
Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) J Comput Phys 151:283–312
Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) J Mol Biol 342:571–583
Li J, Edwards PC, Burghammer M, Villa C, Schertler GF (2004) J Mol Biol 343:1409–1438
Krebs A, Edwards PC, Villa C, Li JD, Schertler GFX (2003) J Biol Chem 278:50217–50225
Brooijmans N, Sharp KA, Kuntz ID (2002) Proteins 48:645–653
Shoichet BK, Kuntz ID (1996) Chem Biol 3:151–156
Gabb HA, Jackson RM, Sternberg MJE (1997) J Mol Biol 272:106–120
Jackson RM, Gabb HA, Sternberg MJE (1998) J Mol Biol 276:265–285
Duhovny D, Nussinov R, Wolfson HJ (2002) Algorithms Bioinformatics Proc 2452:185–200
Exner TE, Keil M, Brickmann J (2002) J Comput Chem 23:1176–1187
Exner TE, Keil M, Brickmann J (2002) J Comput Chem 23:1188–1197
Lichtarge O, Bourne HR, Cohen FE (1996) J Mol Biol 257:342–358
Madabushi S, Gross AK, Philippi A, Meng EC, Wensel TG, Lichtarge O (2004) J Biol Chem 279:8126–8132
Dean MK, Higgs C, Smith RE, Bywater RP, Snell CR, Scott PD, Upton GJG, Howe TJ, Reynolds CA (2001) J Med Chem 44:4595–4614
Nemoto W, Toh H (2005) Proteins 58:644–660
Guo W, Shi L, Javitch JA (2003) J Biol Chem 278:4385–4388
Lee SP, O’Dowd BF, Rajaram RD, Nguyen T, George SR (2003) Biochemistry 42:11023–11031
Hebert TE, Moffett S, Morello JP, Loisel TP, Bichet DG, Barret C, Bouvier M (1996) J Biol Chem 271:16384–16392
Zeng FY, Wess J (1999) J Biol Chem 274:19487–19497
Vogel R, Ruprecht J, Villa C, Mielke T, Schertler GFX, Siebert F (2004) J Mol Biol 338:597–609
Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GF (2004) EMBO J 23:3609–3620
Altenbach C, Klein-Seetharaman J, Cai KW, Khorana HG, Hubbell WL (2001) Biochemistry 40:15493–15500
Hubbell WL, Altenbach C, Hubbell CM, Khorana HG (2003) Adv Prot Chem 63:243–290
Filipek S, Krzysko KA, Fotiadis D, Liang Y, Saperstein DA, Engel A, Palczewski K (2004) Photochem Photobiol Sci 3:628–638
Acknowledgements
This study was supported by funds from Polish State Committee for Scientific Research grant 3P05F02625. Calculations were performed partly in ICM Computer Centre in Warsaw.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Filipek, S. Organization of rhodopsin molecules in native membranes of rod cells–an old theoretical model compared to new experimental data. J Mol Model 11, 385–391 (2005). https://doi.org/10.1007/s00894-005-0268-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00894-005-0268-3