Abstract
It is shown that a cube beam splitter can serve as a single-element birefringence-sensitive interferometer. The polarization-masked beam splitter is oriented as in Gate’s Interferometer i.e., the beam splitting interface is parallel to the incident plane beam. The output consists of a pair of collinearly propagating orthogonally polarized beams which intercepts the birefringent sample placed before a linear polarizer. It is interesting to note that in the proposed method, measurement of birefringence remains unaffected by any phase non-uniformity that might be present in the sample.
Similar content being viewed by others
References
A. K. Asundi, “Digital Photoelasticity”, MATLAB® for Photomechanics — A Primer, 37–77 (2002).
Redner AS, “Photoelastic Measurement by Means of Computer-Assisted Spectral-Contents Analysis,” Experimental Mechanics, 25(2): 148–153 (1985).
Stein RS, “Measurement of Birefringence in Biaxially Oriented Films,” Journal of Polymer Science, 24, 383–386 (1957).
G. R. McIntyre and A. Neureuther, “Phase shift mask interferometric birefringent monitor”, J. Vac. Sci. Technol.B, 24(6), 2808–2814 (2006).
Jing-Fung Lin, Te-Tan Liao, Yu-Lung Lo and Sen-Yung Lee, “The optical linear birefringence measurement using Zeeman laser”, Opt. Comm. 274(1), 153–158 (2007).
S. Corum and A. Brachmann, “Characterization of Ti:Sapphire Laser Rods for Installation in a Polarized Light Source”, Phy. Sci. & Math., Issue 1 (2003).
Digital Holographic Microscopes. Website: http://www.lynceetec.com/downloads/SpecJnl/ImagingAndMicroscopy_0206.pdf
B. Zhao, Z. Cao, R. Fang. A. Asundi, “Diffraction image in an optical microscope: application to detection of birefringence”, Opt.Eng. 41(4), 751–759 (2002).
Arokoski JPA, Hyttinen MM, Lapveteläinen T, Takács P, Kosztáczky B. Módis L. Kovanen V, Helminen HJ, “Decreased direfringence of the superficial zone collagen network in the canine knee (stifle) articular cartilage after long distance running training, detected by quantitative polarised light microscopy”, Ann Rheum Dis 55, 253–264, (1996).
Király K, Hyttinen MM, Lapveteläinen T, Elo M, Kiviranta I, Dobai J, Módis L, Helminen HJ, Arokoski JPA: Specimen preparation and quantification of collagen birefringence in unstained sections of articular cartilage using image analysis and polarizing light microscopy. Histochem J 29, 317–327 (1997).
A. A. Hamza, T. Z. N. Sokkar and M. A. Kabeel, “Interferometric determination of refractive indices and birefringence of fibres with irregular transverse sections”, J. Phys. D: Appl. Phys. L19, 19 (1986).
W. J. Bock, W. Urbánczyk, and M. Fontaine, “Characterization of Highly Birefringent Optical Fibers Using Interferometric Techniques”, IEEE Trans. On Ins. And Meas., 46(4), 903 (1997).
F El-Diasty, “Interferometric determination of induced birefringence due to bending in single-mode optical fibres”, J. Opt. A: Pure Appl. Opt. 1, 197–200 (1999).
Y Otani, T Shimada, T. Oshizawa and N. Umeda, “Two-dimentional birefringence measurement using the phase shifting technique”, Opt. Eng., 33(5) (1994).
Gates, J.W: Reverse Shearing Interferometry, Nature, 176, 359 (1955).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ghosh, N., Chakraborty, A.K. & Bhattacharya, K. A Single Element Birefringence-Sensitive Interferometer. J Opt 37, 147–152 (2008). https://doi.org/10.1007/BF03354849
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF03354849