テキスト生成

このページでは、 Google Cloud コンソール、REST API、サポートされている SDK を使用して、Gemini モデルにチャット プロンプトを送信する方法について説明します。

リクエストに画像やその他のメディアを追加する方法については、画像理解をご覧ください。

Gemini でサポートされている言語の一覧については、言語サポートをご覧ください。


Vertex AI で使用可能な生成 AI モデルと API を探索するには、 Google Cloud コンソールで Model Garden に移動します。

Model Garden に移動


モバイルア��リやウェブアプリから Gemini を直接使用することをお考えの場合は、Swift、Android、ウェブ、Flutter、Unity アプリの Firebase AI Logic クライアント SDK をご覧ください。

テキストを生成する

チャット プロンプトのテストと反復処理には、Google Cloud コンソールを使用することをおすすめします。プログラムでプロンプトをモデルに送信するには、REST API、Google Gen AI SDK、Vertex AI SDK for Python、またはサポートされている他のライブラリや SDK のいずれかを使用します。

システム指示を使用すると、特定のニーズやユースケースに基づいてモデルの動作を制御できます。たとえば、カスタマー サービス リクエストに応答する chatbot のペルソナまたはロールを定義できます。詳細については、システム指示のコードサンプルをご覧ください。

Gemini 2.0 Flash を使用している場合は、Google Gen AI SDK を使用してリクエストを送信できます。

簡単なテキスト生成の例を次に示します。

Python

インストール

pip install --upgrade google-genai

詳しくは、SDK リファレンス ドキュメントをご覧ください。

Vertex AI で Gen AI SDK を使用するための環境変数を設定します。

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents="How does AI work?",
)
print(response.text)
# Example response:
# Okay, let's break down how AI works. It's a broad field, so I'll focus on the ...
#
# Here's a simplified overview:
# ...

Go

Go をインストールまたは更新する方法について学びます。

詳しくは、SDK リファレンス ドキュメントをご覧ください。

Vertex AI で Gen AI SDK を使用するための環境変数を設定します。

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"

	"google.golang.org/genai"
)

// generateWithText shows how to generate text using a text prompt.
func generateWithText(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	resp, err := client.Models.GenerateContent(ctx,
		"gemini-2.5-flash",
		genai.Text("How does AI work?"),
		nil,
	)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)
	// Example response:
	// That's a great question! Understanding how AI works can feel like ...
	// ...
	// **1. The Foundation: Data and Algorithms**
	// ...

	return nil
}

Node.js

インストール

npm install @google/genai

詳しくは、SDK リファレンス ドキュメントをご覧ください。

Vertex AI で Gen AI SDK を使用するための環境変数を設定します。

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await ai.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: 'How does AI work?',
  });

  console.log(response.text);

  return response.text;
}

Java

Java をインストールまたは更新します。

詳しくは、SDK リファレンス ドキュメントをご覧ください。

Vertex AI で Gen AI SDK を使用するための環境変数を設定します。

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;

public class TextGenerationWithText {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Generates text with text input
  public static String generateContent(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      GenerateContentResponse response =
          client.models.generateContent(modelId, "How does AI work?", null);

      System.out.print(response.text());
      // Example response:
      // Okay, let's break down how AI works. It's a broad field, so I'll focus on the ...
      //
      // Here's a simplified overview:
      // ...
      return response.text();
    }
  }
}

ストリーミング レスポンスと非ストリーミング レスポンス

モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。

ストリーミング テキスト生成の例を次に示します。

Python

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Python の設定手順を完了してください。詳細については、Vertex AI Python API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

from google import genai
from google.genai.types import HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
chat_session = client.chats.create(model="gemini-2.5-flash")

for chunk in chat_session.send_message_stream("Why is the sky blue?"):
    print(chunk.text, end="")
# Example response:
# The
#  sky appears blue due to a phenomenon called **Rayleigh scattering**. Here's
#  a breakdown of why:
# ...

次のステップ