Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structure and flow of low-dimensional water

Abstract

When water flows through 1D or 2D channels, its behaviour deviates substantially from the well-established principles of hydrodynamics. This is because reducing the dimensionality of any interacting physical system amplifies interaction effects that are beyond the reach of traditional hydrodynamic equations. In low-dimensional water, hydrogen bonds can become stable enough to arrange water molecules into an ordered state, causing water to behave not only like a liquid but also like a solid in certain respects. In this Review, we explore the relationship between the molecular ordering of water and its ability to flow in low-dimensional channels, using viscosities of bulk water, vapour, and ice as benchmarks. We also provide a brief overview of the key theoretical approaches available for such analyses and discuss ionic transport, which is heavily influenced by the molecular structure of water. The dynamic interaction between low-dimensional water transport and ion-coupled structural features lies at the heart of recent advances in the design and investigation of angstrom-scale biomimetic and neuromorphic channels.

Key points

  • Confining water to 1D lowers its viscosity, whereas 2D confinement results in viscosity higher than that of bulk water.

  • A clear correlation exists between the viscosity of low-dimensional water and the average number of hydrogen bonds per molecule.

  • Although bulk water exhibits a viscosity increase of more than 10 orders of magnitude upon freezing, no first-order liquid–solid transition occurs in the 1D limit.

  • In low-dimensional water, intrinsic (viscous) and extrinsic (slippage-related) friction cannot be clearly distinguished.

  • Different ions restructure surrounding water into distinct hydration shells, competing with confinement effects and giving rise to intrinsic ion selectivity in low-dimensional water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase diagrams of confined water in 2D and 1D with the representative molecular structures.
Fig. 2: Continuum description of low-dimensional water.
Fig. 3: Mechanisms of ionic selectivity in low-dimensional water flow.

Similar content being viewed by others

References

  1. Rousseau, D. L. & Porto, S. Polywater: polymer or artifact? Science 167, 1715–1719 (1970).

    Article  ADS  Google Scholar 

  2. Derjaguin, B. Polywater reviewed. Nature 301, 9–10 (1983).

    Article  ADS  Google Scholar 

  3. Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  ADS  Google Scholar 

  4. Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 438, 44–44 (2005).

    Article  ADS  Google Scholar 

  5. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  ADS  Google Scholar 

  6. Köfinger, J., Hummer, G. & Dellago, C. Macroscopically ordered water in nanopores. Proc. Natl Acad. Sci. USA 105, 13218–13222 (2008).

    Article  ADS  Google Scholar 

  7. Algara-Siller, G. et al. Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015).

    Article  ADS  Google Scholar 

  8. Bampoulis, P., Lohse, D., Zandvliet, H. J. & Poelsema, B. Coarsening dynamics of ice crystals intercalated between graphene and supporting mica. Appl. Phys. Lett. 108, 011601 (2016).

    Article  ADS  Google Scholar 

  9. Severin, N., Lange, P., Sokolov, I. M. & Rabe, J. P. Reversible dewetting of a molecularly thin fluid water film in a soft graphene–mica slit pore. Nano Lett. 12, 774–779 (2012).

    Article  ADS  Google Scholar 

  10. Kim, J.-S. et al. Between scylla and charybdis: hydrophobic graphene-guided water diffusion on hydrophilic substrates. Sci. Rep. 3, 2309 (2013).

    Article  Google Scholar 

  11. Song, J. et al. Evidence of Stranski–Krastanov growth at the initial stage of atmospheric water condensation. Nat. Commun. 5, 4837 (2014).

    Article  ADS  Google Scholar 

  12. Zhou, W. et al. The observation of square ice in graphene questioned. Nature 528, E1–E2 (2015).

    Article  Google Scholar 

  13. Sobrino Fernandez, M., Neek-Amal, M. & Peeters, F. M. AA-stacked bilayer square ice between graphene layers. Phys. Rev. B 92, 245428 (2015).

    Article  ADS  Google Scholar 

  14. Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).

    Article  ADS  Google Scholar 

  15. Emmerich, T. et al. Nanofluidics. Nat Rev Methods Primers 4, 69 (2024).

    Article  Google Scholar 

  16. Boya, R., Keerthi, A. & Parambath, M. S. The wonderland of angstrofluidics. Phys. Today 77, 26–33 (2024).

    Article  Google Scholar 

  17. Cui, B. et al. Low-dimensional and confined ice. Annu. Rev. Mater. Res. 53, 371–397 (2023).

    Article  ADS  Google Scholar 

  18. Takaiwa, D., Hatano, I., Koga, K. & Tanaka, H. Phase diagram of water in carbon nanotubes. Proc. Natl Acad. Sci. USA 105, 39–43 (2008).

    Article  ADS  Google Scholar 

  19. Zangi, R. & Mark, A. E. Monolayer ice. Phys. Rev. Lett. 91, 025502 (2003).

    Article  ADS  Google Scholar 

  20. Maniwa, Y. et al. Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem. Phys. Lett. 401, 534–538 (2005).

    Article  ADS  Google Scholar 

  21. Agrawal, K. V., Shimizu, S., Drahushuk, L. W., Kilcoyne, D. & Strano, M. S. Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nat. Nanotechnol. 12, 267 (2017).

    Article  ADS  Google Scholar 

  22. Kolesnikov, A. I. et al. Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys. Rev. Lett. 93, 035503 (2004).

    Article  ADS  Google Scholar 

  23. Kapil, V. et al. The first-principles phase diagram of monolayer nanoconfined water. Nature 609, 512–516 (2022).

    Article  ADS  Google Scholar 

  24. Lin, B., Jiang, J., Zeng, X. C. & Li, L. Temperature–pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field. Nat. Commun. 14, 4110 (2023).

    Article  ADS  Google Scholar 

  25. Vasu, K. et al. Van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun. 7, 12168 (2016).

    Article  ADS  Google Scholar 

  26. Giovambattista, N., Rossky, P. J. & Debenedetti, P. G. Phase transitions induced by nanoconfinement in liquid water. Phys. Rev. Lett. 102, 050603 (2009).

    Article  ADS  Google Scholar 

  27. Giovambattista, N., Rossky, P. J. & Debenedetti, P. G. Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates. Phys. Rev. E 73, 041604 (2006).

    Article  ADS  Google Scholar 

  28. Negi, S., Carvalho, A., Trushin, M. & Neto, A. C. Edge-driven phase transitions in 2d ice. J. Phys. Chem. C 126, 16006–16015 (2022).

    Article  Google Scholar 

  29. Raju, M., Van Duin, A. & Ihme, M. Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes. Sci. Rep. 8, 3851 (2018).

    Article  ADS  Google Scholar 

  30. Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    Article  ADS  Google Scholar 

  31. Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).

    Article  Google Scholar 

  32. Hanasaki, I. & Nakatani, A. Flow structure of water in carbon nanotubes: Poiseuille type or plug-like? J. Chem. Phys. 124, 144708 (2006).

    Article  ADS  Google Scholar 

  33. Neek-Amal, M. et al. Fast water flow through graphene nanocapillaries: a continuum model approach involving the microscopic structure of confined water. Appl. Phys. Lett. 113, 083101 (2018).

    Article  ADS  Google Scholar 

  34. Keerthi, A. et al. Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 12, 3092 (2021).

    Article  ADS  Google Scholar 

  35. Thomas, J. A. & McGaughey, A. J. Reassessing fast water transport through carbon nanotubes. Nano Lett. 8, 2788–2793 (2008).

    Article  ADS  Google Scholar 

  36. Neek-Amal, M., Peeters, F. M., Grigorieva, I. V. & Geim, A. K. Commensurability effects in viscosity of nanoconfined water. ACS Nano 10, 3685–3692 (2016).

    Article  Google Scholar 

  37. Kavokine, N., Bocquet, M.-L. & Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 602, 84–90 (2022).

    Article  ADS  Google Scholar 

  38. Wu, D. et al. Probing structural superlubricity of two-dimensional water transport with atomic resolution. Science 384, 1254–1259 (2024).

    Article  ADS  Google Scholar 

  39. Faucher, S. et al. Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J. Phys. Chem. C 123, 21309–21326 (2019).

    Article  Google Scholar 

  40. Aluru, N. R. et al. Fluids and electrolytes under confinement in single-digit nanopores. Chem. Rev. 123, 2737–2831 (2023).

    Article  Google Scholar 

  41. Gao, J., Feng, Y., Guo, W. & Jiang, L. Nanofluidics in two-dimensional layered materials: inspirations from nature. Chem. Soc. Rev. 46, 5400–5424 (2017).

    Article  Google Scholar 

  42. Shen, J., Liu, G., Han, Y. & Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).

    Article  ADS  Google Scholar 

  43. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    Article  ADS  Google Scholar 

  44. Kobayashi, H., Hiki, Y. & Takahashi, H. An experimental study on the shear viscosity of solids. J. Appl. Phys. 80, 122–130 (1996).

    Article  ADS  Google Scholar 

  45. Modig, K., Pfrommer, B. G. & Halle, B. Temperature-dependent hydrogen-bond geometry in liquid water. Phys. Rev. Lett. 90, 075502 (2003).

    Article  ADS  Google Scholar 

  46. Muthachikavil, A. V., Peng, B., Kontogeorgis, G. M. & Liang, X. Distinguishing weak and strong hydrogen bonds in liquid water — a potential of mean force-based approach. J. Phys. Chem. B 125, 7187–7198 (2021).

    Article  Google Scholar 

  47. Martiniano, H. & Galamba, N. Insights on hydrogen-bond lifetimes in liquid and supercooled water. J. Phys. Chem. B 117, 16188–16195 (2013).

    Article  Google Scholar 

  48. Zhao, W.-H. et al. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates. Acc. Chem. Res. 47, 2505–2513 (2014).

    Article  Google Scholar 

  49. Trushin, M., Carvalho, A. & Castro Neto, A. Two-dimensional non-linear hydrodynamics and nanofluidics. Commun. Phys. 6, 162 (2023).

    Article  Google Scholar 

  50. Biggs, C. M. & Oatley-Radcliffe, D. L. Proposing a plausible molecular structure for Ice XI: a coupled study using Rietveld refinement and density functional theory. Chem. Phys. 579, 112200 (2024).

    Article  Google Scholar 

  51. Z˘ivković, A., Terranova, U. & de Leeuw, N. H. Water is cool: advanced phonon dynamics in Ice Ih and Ice XI via machine learning potentials and quantum nuclear vibrations. J. Chem. Theory Comput. 21, 1978–1989 (2025).

    Article  Google Scholar 

  52. Qin, X., Yuan, Q., Zhao, Y., Xie, S. & Liu, Z. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 11, 2173–2177 (2011).

    Article  ADS  Google Scholar 

  53. Kannam, S. K., Todd, B., Hansen, J. S. & Daivis, P. J. How fast does water flow in carbon nanotubes? J. Chem. Phys. 138, 094701 (2013).

    Article  ADS  Google Scholar 

  54. Majumder, M., Chopra, N. & Hinds, B. J. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5, 3867–3877 (2011).

    Article  Google Scholar 

  55. Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).

    Article  Google Scholar 

  56. Chen, X. et al. Nanoscale fluid transport: size and rate effects. Nano Lett. 8, 2988–2992 (2008).

    Article  ADS  Google Scholar 

  57. Ye, H., Zhang, H., Zhang, Z. & Zheng, Y. Size and temperature effects on the viscosity of water inside carbon nanotubes. Nanoscale Res. Lett. 6, 87 (2011).

    Article  ADS  Google Scholar 

  58. Zhang, H., Ye, H., Zheng, Y. & Zhang, Z. Prediction of the viscosity of water confined in carbon nanotubes. Microfluid. Nanofluid. 10, 403–414 (2011).

    Article  Google Scholar 

  59. Babu, J. S. & Sathian, S. P. The role of activation energy and reduced viscosity on the enhancement of water flow through carbon nanotubes. J. Chem. Phys. 134, 194509 (2011).

    Article  ADS  Google Scholar 

  60. Myers, T. G. Why are slip lengths so large in carbon nanotubes? Microfluid. Nanofluid. 10, 1141–1145 (2011).

    Article  Google Scholar 

  61. Liu, Y., Wang, Q., Wu, T. & Zhang, L. Fluid structure and transport properties of water inside carbon nanotubes. J. Chem. Phys. 123, 234701 (2005).

    Article  ADS  Google Scholar 

  62. Teske, V., Vogel, E. & Bich, E. Viscosity measurements on water vapor and their evaluation. J. Chem. Eng. Data 50, 2082–2087 (2005).

    Article  Google Scholar 

  63. Hellmann, R. & Vogel, E. The viscosity of dilute water vapor revisited: new reference values from experiment and theory for temperatures between (250 and 2500) K. J. Chem. Eng. Data 60, 3600–3605 (2015).

    Article  Google Scholar 

  64. Korson, L., Drost-Hansen, W. & Millero, F. J. Viscosity of water at various temperatures. J. Phys. Chem. 73, 34–39 (1969).

    Article  Google Scholar 

  65. Jaeger, F., Matar, O. K. & Müller, E. A. Bulk viscosity of molecular fluids. J. Phys. Chem. 148, 174504 (2018).

    Article  Google Scholar 

  66. Gopinadhan, K. et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363, 145–148 (2019).

    Article  ADS  Google Scholar 

  67. Zaragoza, A. et al. Molecular dynamics study of nanoconfined TIP4P/2005 water: how confinement and temperature affect diffusion and viscosity. Phys. Chem. Chem. Phys. 21, 13653–13667 (2019).

    Article  Google Scholar 

  68. Corsetti, F., Matthews, P. & Artacho, E. Structural and configurational properties of nanoconfined monolayer ice from first principles. Sci. Rep. 6, 18651 (2016).

    Article  ADS  Google Scholar 

  69. Dehaoui, A., Issenmann, B. & Caupin, F. Viscosity of deeply supercooled water and its coupling to molecular diffusion. Proc. Natl Acad. Sci. USA 112, 12020–12025 (2015).

    Article  ADS  Google Scholar 

  70. Cerveny, S., Mallamace, F., Swenson, J., Vogel, M. & Xu, L. Confined water as model of supercooled water. Chem. Rev. 116, 7608–7625 (2016).

    Article  Google Scholar 

  71. Schiller, V. & Vogel, M. Ice-water equilibrium in nanoscale confinement. Phys. Rev. Lett. 132, 016201 (2024).

    Article  ADS  Google Scholar 

  72. Baran, Ł., Llombart, P., Rżysko, W. & MacDowell, L. G. Ice friction at the nanoscale. Proc. Natl Acad. Sci. USA 119, e2209545119 (2022).

    Article  MathSciNet  Google Scholar 

  73. Zhao, Y., Wu, Y., Bao, L., Zhou, F. & Liu, W. A new mechanism of the interfacial water film dominating low ice friction. J. Chem. Phys. 157, 234703 (2022).

    Article  ADS  Google Scholar 

  74. Bluhm, H., Ogletree, D. F., Fadley, C. S., Hussain, Z. & Salmeron, M. The premelting of ice studied with photoelectron spectroscopy. J. Phys. Condens. Matter 14, L227 (2002).

    Article  ADS  Google Scholar 

  75. Louden, P. B. & Gezelter, J. D. Why is ice slippery? Simulations of shear viscosity of the quasi-liquid layer on ice. J. Phys. Chem. Lett. 9, 3686–3691 (2018).

    Article  Google Scholar 

  76. Liefferink, R. W., Hsia, F.-C., Weber, B. & Bonn, D. Friction on ice: how temperature, pressure, and speed control the slipperiness of ice. Phys. Rev. X 11, 011025 (2021).

    Google Scholar 

  77. Ma, N. et al. Continuous and first-order liquid–solid phase transitions in two-dimensional water. J. Phys. Chem. B 126, 8892–8899 (2022).

    Article  Google Scholar 

  78. Han, S., Choi, M., Kumar, P. & Stanley, H. E. Phase transitions in confined water nanofilms. Nat. Phys. 6, 685–689 (2010).

    Article  Google Scholar 

  79. Landau, L. D. & Lifshitz, E. M. Course of Theoretical Physics: Fluid Mechanics Vol. 6 (Pergamon, 1987).

  80. Kavokine, N., Netz, R. R. & Bocquet, L. Fluids at the nanoscale: from continuum to subcontinuum transport. Annu. Rev. Fluid Mech. 53, 377–410 (2021).

    Article  ADS  Google Scholar 

  81. Gao, Z., Giovambattista, N. & Sahin, O. Phase diagram of water confined by graphene. Sci. Rep. 8, 6228 (2018).

    Article  ADS  Google Scholar 

  82. Qiu, H., Zeng, X. C. & Guo, W. Water in inhomogeneous nanoconfinement: coexistence of multilayered liquid and transition to ice nanoribbons. ACS Nano 9, 9877–9884 (2015).

    Article  Google Scholar 

  83. Sobrino Fernandez, M., Peeters, F. M. & Neek-Amal, M. Electric-field-induced structural changes in water confined between two graphene layers. Phys. Rev. B 94, 045436 (2016).

    Article  ADS  Google Scholar 

  84. Zubeltzu, J. & Artacho, E. Simulations of water nano-confined between corrugated planes. J. Chem. Phys. 147, 194509 (2017).

    Article  ADS  Google Scholar 

  85. Chen, J., Schusteritsch, G., Pickard, C. J., Salzmann, C. G. & Michaelides, A. Two dimensional ice from first principles: structures and phase transitions. Phys. Rev. Lett. 116, 025501 (2016).

    Article  ADS  Google Scholar 

  86. Corsetti, F., Zubeltzu, J. & Artacho, E. Enhanced configurational entropy in high-density nanoconfined bilayer ice. Phys. Rev. Lett. 116, 085901 (2016).

    Article  ADS  Google Scholar 

  87. Ghorbanfekr, H., Behler, J. & Peeters, F. M. Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations. J. Phys. Chem. Lett. 11, 7363–7370 (2020).

    Article  Google Scholar 

  88. Kalashami, H., Neek-Amal, M. & Peeters, F. Slippage dynamics of confined water in graphene oxide capillaries. Phys. Rev. Mater. 2, 074004 (2018).

    Article  Google Scholar 

  89. Thomas, J. A., McGaughey, A. J. & Kuter-Arnebeck, O. Pressure-driven water flow through carbon nanotubes: insights from molecular dynamics simulation. Int. J. Therm. Sci. 49, 281–289 (2010).

    Article  Google Scholar 

  90. Calabrò, F., Lee, K. & Mattia, D. Modelling flow enhancement in nanochannels: viscosity and slippage. Appl. Math. Lett. 26, 991–994 (2013).

    Article  MathSciNet  Google Scholar 

  91. Whitby, M., Cagnon, L., Thanou, M. & Quirke, N. Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 8, 2632–2637 (2008).

    Article  ADS  Google Scholar 

  92. Kotsalis, E., Walther, J. H. & Koumoutsakos, P. Multiphase water flow inside carbon nanotubes. Int. J. Multiph. Flow 30, 995–1010 (2004).

    Article  ADS  Google Scholar 

  93. Kumar Kannam, S., Todd, B. D., Hansen, J. S. & Daivis, P. J. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations. J. Chem. Phys. 136, 024705 (2012).

    Article  ADS  Google Scholar 

  94. Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14, 6872–6877 (2014).

    Article  ADS  Google Scholar 

  95. Ramos-Alvarado, B., Kumar, S. & Peterson, G. Hydrodynamic slip length as a surface property. Phys. Rev. E 93, 023101 (2016).

    Article  ADS  Google Scholar 

  96. Wei, N., Peng, X. & Xu, Z. Breakdown of fast water transport in graphene oxides. Phys. Rev. E 89, 012113 (2014).

    Article  ADS  Google Scholar 

  97. Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).

    Article  ADS  Google Scholar 

  98. Xie, Q. et al. Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13, 238–245 (2018).

    Article  ADS  Google Scholar 

  99. Sam, A. et al. Fast transport of water in carbon nanotubes: a review of current accomplishments and challenges. Mol. Simul. 47, 905–924 (2021).

    Article  Google Scholar 

  100. Yang, L., Guo, Y. & Diao, D. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement. Phys. Chem. Chem. Phys. 19, 14048–14054 (2017).

    Article  Google Scholar 

  101. Falk, K., Sedlmeier, F., Joly, L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010).

    Article  ADS  Google Scholar 

  102. Nigues, A., Siria, A., Vincent, P., Poncharal, P. & Bocquet, L. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nat. Mater. 13, 688–693 (2014).

    Article  ADS  Google Scholar 

  103. Richards, L. A., Schäfer, A. I., Richards, B. S. & Corry, B. The importance of dehydration in determining ion transport in narrow pores. Small 8, 1701–1709 (2012).

    Article  Google Scholar 

  104. Babu, C. S. & Lim, C. Theory of ionic hydration: insights from molecular dynamics simulations and experiment. J. Phys. Chem. B 103, 7958–7968 (1999).

    Article  Google Scholar 

  105. Tansel, B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012).

    Article  Google Scholar 

  106. Zwolak, M., Lagerqvist, J. & Di Ventra, M. Quantized ionic conductance in nanopores. Phys. Rev. Lett. 103, 128102 (2009).

    Article  ADS  Google Scholar 

  107. Ball, P. Water — an enduring mystery. Nature 452, 291–292 (2008).

    Article  ADS  Google Scholar 

  108. Hua, L., Huang, X., Liu, P., Zhou, R. & Berne, B. J. Nanoscale dewetting transition in protein complex folding. J. Phys. Chem. B 111, 9069–9077 (2007).

    Article  Google Scholar 

  109. Cui, S., Yu, J., Kühner, F., Schulten, K. & Gaub, H. E. Double-stranded DNA dissociates into single strands when dragged into a poor solvent. J. Am. Chem. Soc. 129, 14710–14716 (2007).

    Article  Google Scholar 

  110. Zhu, H., Wang, Y., Fan, Y., Xu, J. & Yang, C. Structure and transport properties of water and hydrated ions in nano-confined channels. Adv. Theory Simul. 2, 1900016 (2019).

    Article  Google Scholar 

  111. Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

    Article  ADS  Google Scholar 

  112. Razmjou, A., Asadnia, M., Hosseini, E., Habibnejad Korayem, A. & Chen, V. Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nat. Commun. 10, 5793 (2019).

    Article  ADS  Google Scholar 

  113. Goutham, S. et al. Beyond steric selectivity of ions using ångström-scale capillaries. Nat. Nanotechnol. 18, 596–601 (2023).

    Article  ADS  Google Scholar 

  114. Kumar, M., Grzelakowski, M., Zilles, J., Clark, M. & Meier, W. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl Acad. Sci. USA 104, 20719–20724 (2007).

    Article  ADS  Google Scholar 

  115. Noskov, S. Y., Berneche, S. & Roux, B. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431, 830–834 (2004).

    Article  ADS  Google Scholar 

  116. He, Z., Zhou, J., Lu, X. & Corry, B. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano 7, 10148–10157 (2013).

    Article  Google Scholar 

  117. Zhao, S., Xue, J. & Kang, W. Ion selection of charge-modified large nanopores in a graphene sheet. J. Chem. Phys. 139, 114702 (2013).

    Article  ADS  Google Scholar 

  118. Hinds, B. J. et al. Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004).

    Article  ADS  Google Scholar 

  119. Majumder, M., Chopra, N. & Hinds, B. J. Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. J. Am. Chem. Soc. 127, 9062–9070 (2005).

    Article  Google Scholar 

  120. Fornasiero, F. et al. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl Acad. Sci. USA 105, 17250–17255 (2008).

    Article  ADS  Google Scholar 

  121. Chan, W.-F. et al. Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. ACS Nano 7, 5308–5319 (2013).

    Article  Google Scholar 

  122. Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).

    Article  ADS  Google Scholar 

  123. Jalali, H. et al. Out-of-plane permittivity of confined water. Phys. Rev. E 102, 022803 (2020).

    Article  ADS  Google Scholar 

  124. Sugahara, A. et al. Negative dielectric constant of water confined in nanosheets. Nat. Commun. 10, 850 (2019).

    Article  ADS  Google Scholar 

  125. Jalali, H., Khoeini, F., Peeters, F. M. & Neek-Amal, M. Hydration effects and negative dielectric constant of nano-confined water between cation intercalated MXenes. Nanoscale 13, 922–929 (2021).

    Article  Google Scholar 

  126. Liang, X. et al. Formation of compounds with diverse polyelectrolyte morphologies and nonlinear ion conductance in a two-dimensional nanofluidic channel. Chem. Sci. 15, 8170–8180 (2024).

    Article  Google Scholar 

  127. Zhao, W. et al. Two-dimensional monolayer salt nanostructures can spontaneously aggregate rather than dissolve in dilute aqueous solutions. Nat. Commun. 12, 5602 (2021).

    Article  ADS  Google Scholar 

  128. Zhao, W. et al. Evidence of formation of monolayer hydrated salts in nanopores. J. Am. Chem. Soc. 144, 18976–18985 (2022).

    Article  Google Scholar 

  129. Robin, P., Kavokine, N. & Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 373, 687–691 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  130. Robin, P. et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379, 161–167 (2023).

    Article  ADS  Google Scholar 

  131. Xiong, T. et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 379, 156–161 (2023).

    Article  ADS  Google Scholar 

  132. Babin, V., Medders, G. R. & Paesani, F. Toward a universal water model: first principles simulations from the dimer to the liquid phase. J. Phys. Chem. Lett. 3, 3765–3769 (2012).

    Article  Google Scholar 

  133. Behler, J. Perspective: machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016).

    Article  ADS  Google Scholar 

  134. Yu, Q. et al. A status report on ‘gold standard’ machine-learned potentials for water. J. Phys. Chem. Lett. 14, 8077–8087 (2023).

    Article  Google Scholar 

  135. Trachenko, K. & Brazhkin, V. V. The quantum mechanics of viscosity. Phys. Today 74, 66–67 (2021).

    Article  ADS  Google Scholar 

  136. Chiang, K.-Y., Hunger, J., Bonn, M. & Nagata, Y. Experimental quantification of nuclear quantum effects on the hydrogen bond of liquid water. Sci. Adv. 11, eadv7218 (2025).

    Article  Google Scholar 

  137. Su, J. & Guo, H. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field. ACS Nano 5, 351–359 (2011).

    Article  Google Scholar 

  138. Montenegro, A. et al. Asymmetric response of interfacial water to applied electric fields. Nature 594, 62–65 (2021).

    Article  ADS  Google Scholar 

  139. Yeo, L. Y. & Friend, J. R. Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46, 379–406 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  140. Moid, M., Finkelstein, Y., Moreh, R. & Maiti, P. K. Anisotropy of the proton kinetic energy as a tool for capturing structural transition in water confined in a graphene nanoslit pore. J. Phys. Chem. Lett. 13, 455–461 (2022).

    Article  Google Scholar 

  141. Moid, M., Finkelstein, Y., Moreh, R. & Maiti, P. K. Microscopic study of proton kinetic energy anomaly for nanoconfined water. J. Phys. Chem. B 124, 190–198 (2019).

    Article  Google Scholar 

  142. Amann-Winkel, K. et al. Water’s second glass transition. Proc. Natl Acad. Sci. USA 110, 17720–17725 (2013).

    Article  ADS  Google Scholar 

  143. Berthier, L., Charbonneau, P., Ninarello, A., Ozawa, M. & Yaida, S. Zero-temperature glass transition in two dimensions. Nat. Commun. 10, 1508 (2019).

    Article  ADS  Google Scholar 

  144. Moid, M., Sastry, S., Dasgupta, C., Pascal, T. A. & Maiti, P. K. Dimensionality dependence of the Kauzmann temperature: a case study using bulk and confined water. J. Chem. Phys. 154, 164510 (2021).

    Article  ADS  Google Scholar 

  145. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000).

    Article  ADS  Google Scholar 

  146. Sui, H., Han, B.-G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001).

    Article  ADS  Google Scholar 

  147. Siwy, Z. & Fornasiero, F. Improving on aquaporins. Science 357, 753 (2017).

    Article  Google Scholar 

  148. Shen, J. et al. Fluorofoldamer-based salt- and proton-rejecting artificial water channels for ultrafast water transport. Nano Lett. 22, 4831–4838 (2022).

    Article  ADS  Google Scholar 

  149. Yang, K. et al. Graphene/chitosan nanoreactors for ultrafast and precise recovery and catalytic conversion of gold from electronic waste. Proc. Natl Acad. Sci. USA 121, e2414449121 (2024).

    Article  Google Scholar 

  150. Chen, S. et al. Ultra-tough graphene oxide/DNA 2D hydrogel with intrinsic sensing and actuation functions. Macromol. Rapid Commun. 46, 2400518 (2025).

    Article  Google Scholar 

  151. Yang, K. et al. Electro-thermo controlled water valve based on 2D graphene–cellulose hydrogels. Adv. Funct. Mater. 32, 2201904 (2022).

    Article  Google Scholar 

  152. Bong, J. H. et al. Graphene oxide–DNA/graphene oxide–PDDA sandwiched membranes with neuromorphic function. Nanoscale Horiz. 9, 863–872 (2024).

    Article  ADS  Google Scholar 

  153. Yang, K., Wang, Q., Novoselov, K. S. & Andreeva, D. V. A nanofluidic sensing platform based on robust and flexible graphene oxide/chitosan nanochannel membranes for glucose and urea detection. Nanoscale Horiz. 8, 1243–1252 (2023).

    Article  ADS  Google Scholar 

  154. Yang, K. et al. Graphene oxide–polyamine preprogrammable nanoreactors with sensing capability for corrosion protection of materials. Proc. Natl Acad. Sci. USA 120, e2307618120 (2023).

    Article  Google Scholar 

  155. Andreeva, D. V. et al. Two-dimensional adaptive membranes with programmable water and ionic channels. Nat. Nanotechnol. 16, 174–180 (2021).

    Article  ADS  Google Scholar 

  156. Baran, Ł., Rżysko, W. & MacDowell, L. G. Self-diffusion and shear viscosity for the TIP4P/ice water model. J. Chem. Phys. 158, 064503 (2023).

    Article  ADS  Google Scholar 

  157. Abramson, E. H. Viscosity of water measured to pressures of 6 GPa and temperatures of 300 °C. Phys. Rev. E 76, 051203 (2007).

    Article  ADS  Google Scholar 

  158. Guillaud, E., Merabia, S., de Ligny, D. & Joly, L. Decoupling of viscosity and relaxation processes in supercooled water: a molecular dynamics study with the TIP4P/2005f model. Phys. Chem. Chem. Phys. 19, 2124–2130 (2017).

    Article  Google Scholar 

  159. Singh, L. P., Issenmann, B. & Caupin, F. Pressure dependence of viscosity in supercooled water and a unified approach for thermodynamic and dynamic anomalies of water. Proc. Natl Acad. Sci. USA 114, 4312–4317 (2017).

    Article  ADS  Google Scholar 

  160. Hallett, J. The temperature dependence of the viscosity of supercooled water. Proc. Phys. Soc. 82, 1046 (1963).

    Article  ADS  Google Scholar 

  161. Leng, Y. & Cummings, P. T. Fluidity of hydration layers nanoconfined between mica surfaces. Phys. Rev. Lett. 94, 026101 (2005).

    Article  ADS  Google Scholar 

  162. Sotin, C. & Poirier, J. Viscosity of ice V. J. Phys. Colloq. 48, C1–C233 (1987).

    Article  Google Scholar 

  163. Deeley, R. The viscosity of ice. Proc. R. Soc. Lond. Ser. A 81, 250–259 (1908).

    Article  ADS  Google Scholar 

  164. Yen, F. & Chi, Z. Proton ordering dynamics of H2O ice. Phys. Chem. Chem. Phys. 17, 12458–12461 (2015).

    Article  Google Scholar 

  165. Bocquet, L. & Barrat, J.-L. Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys. Rev. E 49, 3079 (1994).

    Article  ADS  Google Scholar 

  166. Maginn, E. J., Messerly, R. A., Carlson, D. J., Roe, D. R. & Elliot, J. R. Best practices for computing transport properties 1. Self-diffusivity and viscosity from equilibrium molecular dynamics [Article v1. 0]. Living J. Comput. Mol. Sci. 1, 6324 (2019).

    Google Scholar 

  167. Eyring, H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936).

    Article  ADS  Google Scholar 

  168. Mathas, D. et al. Evaluation of methods for viscosity simulations of lubricants at different temperatures and pressures: a case study on PAO-2. Tribol. Trans. 64, 1138–1148 (2021).

    Article  Google Scholar 

  169. Kadaoluwa Pathirannahalage, S. P. et al. Systematic comparison of the structural and dynamic properties of commonly used water models for molecular dynamics simulations. J. Chem. Inf. Model 61, 4521–4536 (2021).

    Article  Google Scholar 

  170. Barker, J. A. & Watts, R. O. Structure of water; a Monte Carlo calculation. Chem. Phys. Lett. 3, 144–145 (1969).

    Article  ADS  Google Scholar 

  171. Senftle, T. P. et al. The ReaxFF reactive force-field: development, applications and future directions. npj Comput. Mater. 2, 15011 (2016).

    Article  ADS  Google Scholar 

  172. Izadi, S. & Onufriev, A. V. Accuracy limit of rigid 3-point water models. J. Chem. Phys. 145, 074501 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Singapore Ministry of Education Research Centre of Excellence award to the Institute for Functional Intelligent Materials (I-FIM, Project No. EDUNC-33-18-279-V12).

Author information

Authors and Affiliations

Authors

Contributions

M.T. and K.S.N. developed the concept of the manuscript. M.T. and D.V.A. collected data. M.T. and F.M.P. wrote the manuscript.

Corresponding authors

Correspondence to Daria V. Andreeva or Kostya S. Novoselov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Prabal Maiti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trushin, M., Andreeva, D.V., Peeters, F.M. et al. Structure and flow of low-dimensional water. Nat Rev Phys 7, 502–513 (2025). https://doi.org/10.1038/s42254-025-00857-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-025-00857-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing