Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

From 2D to 3D and beyond: the evolution and impact of in vitro tumor models in cancer research

Abstract

In vitro tumor models are essential tools for cancer research, offering key insights into not only tumor biology but also therapeutic responses. The transition from traditional two-dimensional to three-dimensional organoid systems marks a paradigm shift in cancer modeling. Although two-dimensional models have been instrumental in elucidating fundamental molecular and genetic mechanisms, they fail to accurately replicate the intricate three-dimensional architecture and dynamic microenvironment characteristic of human tumors. Here we outline how advanced organoid technologies now enable more faithful recapitulation of tumor heterogeneity that better mimic native tissue mechanics and biochemistry. We discuss emerging methods, including air–liquid interface cultures, microfluidic tumor-on-a-chip devices and high-content imaging integrated with machine learning, which collectively address longstanding challenges such as matrix variability and the limited incorporation of immune and vascular elements. These innovations promise to enhance reproducibility and scalability while providing unprecedented insights into tumor biology, cancer progression and therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The evolution of in vitro tumor models in cancer research.

Similar content being viewed by others

References

  1. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, Z. et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15, 501–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rofstad, E. K. & Halsør, E. F. Hypoxia-associated spontaneous pulmonary metastasis in human melanoma xenografts: involvement of microvascular hot spots induced in hypoxic foci by interleukin 8. Br. J. Cancer 86, 301–308 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mani, S. A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. McGranahan, N. & Swanton, C. Cancer evolution constrained by the immune microenvironment. Cell 170, 825–827 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C. & Kuperwasser, C. Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell 24, 65–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Tabassum, D. P. & Polyak, K. Tumorigenesis: it takes a village. Nat. Rev. Cancer 15, 473–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Cheon, D. -J. & Orsulic, S. Mouse models of cancer. Annu. Rev. Pathol. 6, 95–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteomics 11, M111.014647 (2012).

    Article  PubMed  Google Scholar 

  13. Mestas, J. & Hughes, C. C. W. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Sutherland, R. M., McCredie, J. A. & Inch, W. R. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J. Natl Cancer Inst. 46, 113–120 (1971).

    CAS  PubMed  Google Scholar 

  15. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Oishi, H., Tabibzadeh, N. & Morizane, R. Advancing preclinical drug evaluation through automated 3D imaging for high-throughput screening with kidney organoids. Biofabrication https://doi.org/10.1088/1758-5090/ad38df (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bozal, S. B. et al. Development of an automated 3D high content cell screening platform for organoid phenotyping. SLAS Discov. 29, 100182 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carrel, A. On the permanent life of tissues outside of the organism. J. Exp. Med. 15, 516–528 (1912).

    PubMed  PubMed Central  Google Scholar 

  20. Gey, G. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 12, 264–265 (1952).

    Google Scholar 

  21. Lucey, B. P., Nelson-Rees, W. A. & Hutchins, G. M. Henrietta Lacks, HeLa cells, and cell culture contamination. Arch. Pathol. Lab. Med. 133, 1463–1467 (2009).

    Article  PubMed  Google Scholar 

  22. Soule, H. D., Vazguez, J., Long, A., Albert, S. & Brennan, M. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl Cancer Inst. 51, 1409–1416 (1973).

    Article  CAS  PubMed  Google Scholar 

  23. Young, R., Cailleau, R., Mackay, B. & Reeves, W. Jr. Establishment of epithelial cell line MDA-MB-157 from metastatic pleural effusion of human breast carcinoma. In Vitro 9, 239–245 (1974).

    Article  CAS  PubMed  Google Scholar 

  24. Cailleau, R., Young, R., Olive, M. & Reeves, W. Jr Breast tumor cell lines from pleural effusions. J. Natl Cancer Inst. 53, 661–674 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cailleau, R., Olive, M. & Cruciger, Q. V. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14, 911–915 (1978).

    Article  CAS  PubMed  Google Scholar 

  26. Gillet, J. P., Varma, S. & Gottesman, M. M. The clinical relevance of cancer cell lines. J. Natl Cancer Inst. 105, 452–458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Valiente, M. et al. Brain metastasis cell lines panel: a public resource of organotropic cell lines. Cancer Res. 80, 4314–4323 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 6, 813–823 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Ethier, S. P. et al. Development and implementation of the SUM breast cancer cell line functional genomics knowledge base. NPJ Breast Cancer 6, 30 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weinberg, R. A. Oncogenes and the molecular biology of cancer. J. Cell Biol. 97, 1661–1662 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. Shih, C. & Weinberg, R. A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29, 161–169 (1982).

    Article  CAS  PubMed  Google Scholar 

  32. Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15, 356–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Levine, A. J. The tumor suppressor genes. Annu. Rev. Biochem. 62, 623–651 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Lo, C. -M., Wang, H. -B., Dembo, M. & Wang, Y. -l Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pelham, R. J. & Wang, Y. -L. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ng, M. R., Besser, A., Brugge, J. S. & Danuser, G. Mapping the dynamics of force transduction at cell–cell junctions of epithelial clusters. eLife 3, e03282 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sutherland, R. M. & Durand, R. E. Radiation response of multicell spheroids-an in vitro tumour model. Curr. Top. Radiat. Res. Q. 11, 87–139 (1976).

    CAS  PubMed  Google Scholar 

  41. Maritan, S. M., Lian, E. Y. & Mulligan, L. M. An efficient and flexible cell aggregation method for 3D spheroid production. J. Vis. Exp. https://doi.org/10.3791/55544 (2017).

  42. Nazari, S. S. Generation of 3D tumor spheroids with encapsulating basement membranes for invasion studies. Curr. Protoc. Cell Biol. 87, e105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carlsson, J. et al. Formation and growth of multicellular spheroids of human origin. Int. J. Cancer 31, 523–533 (1983).

    Article  CAS  PubMed  Google Scholar 

  44. Sutherland, R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240, 177–184 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Casciari, J. J., Sotirchos, S. V. & Sutherland, R. M. Glucose diffusivity in multicellular tumor spheroids. Cancer Res. 48, 3905–3909 (1988).

    CAS  PubMed  Google Scholar 

  46. Lee, C. H., Yu, C. C., Wang, B. Y. & Chang, W. W. Tumorsphere as an effective in vitro platform for screening anti-cancer stem cell drugs. Oncotarget 7, 1215–1226 (2016).

    Article  PubMed  Google Scholar 

  47. Ishiguro, T. et al. Tumor-derived spheroids: relevance to cancer stem cells and clinical applications. Cancer Sci. 108, 283–289 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Froehlich, K. et al. Generation of multicellular breast cancer tumor spheroids: comparison of different protocols. J. Mammary Gland Biol. Neoplasia 21, 89–98 (2016).

    Article  PubMed  Google Scholar 

  49. Wei, X., Wu, Y., Chen, K., Wang, L. & Xu, M. Embedded bioprinted multicellular spheroids modeling pancreatic cancer bioarchitecture towards advanced drug therapy. J. Mater. Chem. B 12, 1788–1797 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, Z. et al. Rapid tissue prototyping with micro-organospheres. Stem Cell Rep. 17, 1959–1975 (2022).

    Article  CAS  Google Scholar 

  51. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

    Article  CAS  PubMed  Google Scholar 

  52. Li, M. L. et al. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl Acad. Sci. USA 84, 136–140 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barcellos-Hoff, M. H., Aggeler, J., Ram, T. G. & Bissell, M. J. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105, 223–235 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Muthuswamy, S. K., Li, D., Lelievre, S., Bissell, M. J. & Brugge, J. S. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat. Cell Biol. 3, 785–792 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kleinman, H. K. et al. Basement membrane complexes with biological activity. Biochemistry 25, 312–318 (1986).

    Article  CAS  PubMed  Google Scholar 

  56. Tsai, K. K. et al. Screening of organoids derived from patients with breast cancer implicates the repressor NCOR2 in cytotoxic stress response and antitumor immunity. Nat. Cancer 3, 734–752 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hebner, C., Weaver, V. M. & Debnath, J. Modeling morphogenesis and oncogenesis in three-dimensional breast epithelial cultures. Annu. Rev. Pathol. 3, 313–339 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Sachs, N. et al. Long‐term expanding human airway organoids for disease modeling. EMBO J. 38, e100300 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rosenbluth, J. M. et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nat. Commun. 11, 1711 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Di Lullo, E. & Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18, 573–584 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cho, A. N. et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat. Commun. 12, 4730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Sekine, K. et al. Generation of human induced pluripotent stem cell-derived liver buds with chemically defined and animal origin-free media. Sci. Rep. 10, 17937 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, J. et al. Functional 3D human liver bud assembled from MSC-derived multiple liver cell lineages. Cell Transplant. 28, 510–521 (2019).

    Article  PubMed  Google Scholar 

  68. Zhang, R. R. et al. Human iPSC-derived posterior gut progenitors are expandable and capable of forming gut and liver organoids. Stem Cell Rep. 10, 780–793 (2018).

    Article  CAS  Google Scholar 

  69. Yan, H. H. N. et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23, 882–897 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jacob, F. et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180, 188–204 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Bleijs, M., van de Wetering, M., Clevers, H. & Drost, J. Xenograft and organoid model systems in cancer research. EMBO J. 38, e101654 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hubert, C. G. et al. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 76, 2465–2477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Kim, M. et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 10, 3991 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li, X. et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat. Commun. 9, 2983 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lee, S. H. et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173, 515–528 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. de Witte, C. J. et al. Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter- and intrapatient drug responses. Cell Rep. https://doi.org/10.1016/j.celrep.2020.107762 (2020).

  82. Li, Z. et al. Patient-derived renal cell carcinoma organoids for personalized cancer therapy. Clin. Transl. Med. 12, e970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Broutier, L. et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kopper, O. et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 25, 838–849 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Drost, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Calandrini, C. et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat. Commun. 11, 1310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sanchez-Fdez, A., Sharma, A. K., Tiriac, H. & Sicklick, J. K. Patient-derived sarcoma organoids offer a novel platform for personalized precision medicine. Ann. Surg. Oncol. 29, 7239–7241 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xu, S., Tan, S. & Guo, L. Patient-derived organoids as a promising tool for multimodal management of sarcomas. Cancers https://doi.org/10.3390/cancers15174339 (2023).

  90. Chen, Y. et al. Addressing modern diagnostic pathology for patient-derived soft tissue sarcosphere models in the era of functional precision oncology. Lab Invest. 103, 100039 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Meister, M. T. et al. Mesenchymal tumor organoid models recapitulate rhabdomyosarcoma subtypes. EMBO Mol. Med. 14, e16001 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Savary, C. et al. Fusion-negative rhabdomyosarcoma 3D organoids to predict effective drug combinations: a proof-of-concept on cell death inducers. Cell Rep. Med. 4, 101339 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Guillen, K. P. et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat. Cancer 3, 232–250 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Driehuis, E., Kretzschmar, K. & Clevers, H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc. 15, 3380–3409 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Khalili, S. et al. StarTrace: a multiplex organoid avatar drug testing platform for personalized medicine. Preprint at bioRxiv https://doi.org/10.1101/2025.02.12.637574 (2025).

  96. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Drost, J. et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science 358, 234–238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Geurts, M. H. & Clevers, H. CRISPR engineering in organoids for gene repair and disease modelling. Nat. Rev. Bioeng. 1, 32–45 (2023).

    Article  CAS  Google Scholar 

  99. Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Matano, M. et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Pasch, C. A. et al. Patient-derived cancer organoid cultures to predict sensitivity to chemotherapy and radiation. Clin. Cancer Res. 25, 5376–5387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ooft, S. et al. Prospective experimental treatment of colorectal cancer patients based on organoid drug responses. ESMO Open 6, 100103 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thorel, L. et al. Patient-derived tumor organoids: a new avenue for preclinical research and precision medicine in oncology. Exp. Mol. Med. 56, 1531–1551 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Millen, R. et al. Patient-derived head and neck cancer organoids allow treatment stratification and serve as a tool for biomarker validation and identification. Med. 4, 290–310 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Berg, H. F. et al. Patient-derived organoids reflect the genetic profile of endometrial tumors and predict patient prognosis. Commun. Med. 1, 20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zeng, W. et al. Patient-derived xenografts of different grade gliomas retain the heterogeneous histological and genetic features of human gliomas. Cancer Cell Int. 20, 1 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ding, S. et al. Patient-derived micro-organospheres enable clinical precision oncology. Cell Stem Cell 29, 905–917 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nishiguchi, A. et al. In vitro 3D blood/lymph-vascularized human stromal tissues for preclinical assays of cancer metastasis. Biomaterials 179, 144–155 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Mao, M. et al. Human‐on‐leaf‐chip: a biomimetic vascular system integrated with chamber‐specific organs. Small 16, e2000546 (2020).

    Article  CAS  Google Scholar 

  110. Lee, H., Park, W., Ryu, H. & Jeon, N. L. A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasation. Biomicrofluidics 8, 054102 (2014).

  111. Aleman, J. & Skardal, A. A multi‐site metastasis‐on‐a‐chip microphysiological system for assessing metastatic preference of cancer cells. Biotechnol. Bioeng. 116, 936–944 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Liu, X. et al. Tumor-on-a-chip: from bioinspired design to biomedical application. Microsyst. Nanoeng. 7, 50 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Jouybar, M. et al. Cancer-on-chip models for metastasis: importance of the tumor microenvironment. Trends Biotechnol. 42, 431–448 (2024).

    Article  CAS  PubMed  Google Scholar 

  114. Wörsdörfer, P. et al. Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells. Sci. Rep. 9, 15663 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tsai, S. et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer 18, 335 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Haque, M. R. et al. Patient-derived pancreatic cancer-on-a-chip recapitulates the tumor microenvironment. Microsyst. Nanoeng. 8, 36 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Seino, T. et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 22, 454–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mu, P. et al. Newly developed 3D in vitro models to study tumor-immune interaction. J. Exp. Clin. Cancer Res. 42, 81 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kozlowski, M. T., Crook, C. J. & Ku, H. T. Towards organoid culture without Matrigel. Commun. Biol. 4, 1387 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Oxford, J. T., Reeck, J. C. & Hardy, M. J. Extracellular matrix in development and disease. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20010205 (2019).

  123. Feng B, Y. H. et al. Collagen-based biomaterials in organoid technology for reproductive medicine: composition, characteristics, and applications. Collagen Leather 5, 35 (2023).

    Article  Google Scholar 

  124. Barnes, C. et al. From single cells to tissues: interactions between the matrix and human breast cells in real time. PLoS ONE 9, e93325 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Vörsmann, H. et al. Development of a human three-dimensional organotypic skin-melanoma spheroid model for in vitro drug testing. Cell Death Dis. 4, e719 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wang, H. K., Broker, T. R. & Chow, L. T. Robust HPV-18 production in organotypic cultures of primary human keratinocytes. Methods Mol. Biol. 1249, 93–109 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Maione, A. G. et al. Three-dimensional human tissue models that incorporate diabetic foot ulcer-derived fibroblasts mimic in vivo features of chronic wounds. Tissue Eng. Part C Methods 21, 499–508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Parry, D. A. D. The molecular fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys. Chem. 29, 195–209 (1988).

    Article  CAS  PubMed  Google Scholar 

  129. Abbas, Y. et al. Generation of a three-dimensional collagen scaffold-based model of the human endometrium. Interface Focus 10, 20190079 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Krause, S., Maffini, M. V., Soto, A. M. & Sonnenschein, C. A novel 3D in vitro culture model to study stromal-epithelial interactions in the mammary gland. Tissue Eng. Part C Methods 14, 261–271 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Yu, W. et al. β1-integrin orients epithelial polarity via Rac1 and laminin. Mol. Biol. Cell 16, 433–445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Manninen, A. Epithelial polarity–generating and integrating signals from the ECM with integrins. Exp. Cell. Res. 334, 337–349 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Damljanović, V., Lagerholm, B. C. & Jacobson, K. Bulk and micropatterned conjugation of extracellular matrix proteins to characterized polyacrylamide substrates for cell mechanotransduction assays. Biotechniques 39, 847–851 (2005).

    Article  PubMed  Google Scholar 

  135. Tse, J. R. & Engler, A. J. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell Biol. 47, 10.16.11–10.16.16 (2010).

    Article  Google Scholar 

  136. Lin, C. -C. & Anseth, K. S. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26, 631–643 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Phelps, E. A. et al. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in-situ delivery. Adv. Mater. 24, 64–70 (2011).

    PubMed  Google Scholar 

  138. Kumar, V. B., Tiwari, O. S., Finkelstein-Zuta, G., Rencus-Lazar, S. & Gazit, E. Design of functional RGD peptide-based biomaterials for tissue engineering. Pharmaceutics 15, 345 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Urciuolo, A. et al. Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures. Nat. Commun. 14, 3128 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lee, J. M. et al. Conductive hydrogel/nanowire micropattern-based sensor for neural stem cell differentiation. Sens. Actuators B Chem. 258, 1042–1050 (2018).

    Article  CAS  Google Scholar 

  142. Sokol, E. S. et al. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res. 18, 19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Rauner, G. et al. Next-generation breast organoids capture tissue organogenesis with high-resolution live imaging. Preprint at bioRxiv https://doi.org/10.1101/2023.10.02.560364 (2025).

  144. Rauner, G. et al. Breast tissue regeneration is driven by cell-matrix interactions coordinating multi-lineage stem cell differentiation through DDR1. Nat. Commun. 12, 7116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Guenther, C. Stiffness regulates dendritic cell and macrophage subtype development and increased stiffness induces a tumor–associated macrophage phenotype in cancer co–cultures. Front. Immunol. 15, 1434030 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang, C., Tong, X. & Yang, F. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Mol. Pharm. 11, 2115–2125 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Wang, Z. et al. Spatial cell fate manipulation of human pluripotent stem cells by controlling the microenvironment using photocurable hydrogel. Development 151, dev201621 (2024).

  148. Guimarães, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351–370 (2020).

    Article  Google Scholar 

  149. Linnemann, J. R. et al. Quantification of regenerative potential in primary human mammary epithelial cells. Development 142, 3239–3251 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Buchmann, B. et al. Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids. Nat. Commun. 12, 2759 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Trepicchio, C. et al. DDR1 regulates RUNX1-CBFβ to control breast stem cell differentiation. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2025.102576 (2025).

  152. Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Ershov, D. et al. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat. Methods 19, 829–832 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Choo, N. et al. High-throughput imaging assay for drug screening of 3D prostate cancer organoids. SLAS Discov. 26, 1107–1124 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li, X. et al. Assay establishment and validation of a high-throughput organoid-based drug screening platform. Stem Cell Res. Ther. 13, 219 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lee, B. H. et al. Control of lumen geometry and topology by the interplay between pressure and cell proliferation rate in pancreatic organoids. Preprint at bioRxiv https://doi.org/10.1101/2024.05.29.596462 (2024).

  158. Lukonin, I., Zinner, M. & Liberali, P. Organoids in image-based phenotypic chemical screens. Exp. Mol. Med. 53, 1495–1502 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Barroso, M., Monaghan, M. G., Niesner, R. & Dmitriev, R. I. Probing organoid metabolism using fluorescence lifetime imaging microscopy (FLIM): the next frontier of drug discovery and disease understanding. Adv. Drug Deliv. Rev. 201, 115081 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M. & Nielsen, L. K. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng. 83, 173–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Friedrich, J., Seidel, C., Ebner, R. & Kunz-Schughart, L. A. Spheroid-based drug screen: considerations and practical approach. Nat. Protoc. 4, 309–324 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Abbas, Z. N., Al-Saffar, A. Z., Jasim, S. M. & Sulaiman, G. M. Comparative analysis between 2D and 3D colorectal cancer culture models for insights into cellular morphological and transcriptomic variations. Sci. Rep. 13, 18380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ma, X. -L. et al. Sphere-forming culture enriches liver cancer stem cells and reveals Stearoyl-CoA desaturase 1 as a potential therapeutic target. BMC Cancer 19, 760 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ponti, D. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506–5511 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Yu, S. -c et al. Isolation and characterization of cancer stem cells from a human glioblastoma cell line U87. Cancer Lett. 265, 124–134 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bersini, S. et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35, 2454–2461 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Skardal, A., Devarasetty, M., Forsythe, S., Atala, A. & Soker, S. A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol. Bioeng. 113, 2020–2032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. McAleer, C. W. et al. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. Sci. Transl. Med. 11, eaav1386 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institute of General Medical Sciences (7R01GM124491, to C.K.), DOD-BCRP (W81XWH2010018, to G.R.), Breast Cancer Research Foundation (to C.K.) and FTC Breast Cancer Foundation (to C.K.).

Author information

Authors and Affiliations

Authors

Contributions

G.R., P.B.G. and C.K. jointly conceived the perspective, and wrote the manuscript with contributions, editorial review and approval from all authors.

Corresponding author

Correspondence to Charlotte Kuperwasser.

Ethics declarations

Competing interests

C.K. is a cofounder and consultant of Naveris. P.B.G. is a cofounder, Chief Science & Technology Officer and Executive Chairman of Naveris. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Andrea McClatchey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Madhura Mukhopadhyay, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauner, G., Gupta, P.B. & Kuperwasser, C. From 2D to 3D and beyond: the evolution and impact of in vitro tumor models in cancer research. Nat Methods 22, 1776–1787 (2025). https://doi.org/10.1038/s41592-025-02769-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-025-02769-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer