Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Tumor aneuploidy as a prognostic and predictive biomarker in immune checkpoint blockade

Abstract

Aneuploidy, a hallmark of cancer characterized by chromosome imbalances, drives tumorigenesis and facilitates cancer immune evasion. While high tumor aneuploidy is linked to immune checkpoint blockade (ICB) resistance and poor prognosis, evidence suggests that this resistance can be overcome through treatment intensification, for example, with the addition of ablative radiotherapy to ICB. In this Perspective, we argue that the predictive value of aneuploidy complements established biomarkers, such as tumor mutational burden (TMB) or programmed death ligand 1 (PD-L1) expression. We review contemporary methods for quantifying aneuploidy, explore novel approaches that target mitotic vulnerabilities in aneuploid tumors and highlight potential areas where aneuploidy-based stratification could be incorporated into ICB-based treatment paradigms across early-stage, locally advanced and metastatic cancers. Prospective trials incorporating aneuploidy-based stratification will be essential to validate its role in personalized cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of immunotherapy resistance in aneuploid tumors.

Similar content being viewed by others

References

  1. Weaver, B. A. & Cleveland, D. W. Does aneuploidy cause cancer? Curr. Opin. Cell Biol. 18, 658–667 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. Bakhoum, S. F. & Compton, D. A. Chromosomal instability and cancer: a complex relationship with therapeutic potential. J. Clin. Invest. 122, 1138–1143 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174, 1347–1360 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hassold, T. et al. Human aneuploidy: incidence, origin, and etiology. Environ. Mol. Mutagen. 28, 167–175 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. Sheltzer, J. M. & Amon, A. The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends Genet. 27, 446–453 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676–689 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sack, L. M. et al. Profound tissue specificity in proliferation control underlies cancer drivers and aneuploidy patterns. Cell 173, 499–514 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13, 189–203 (2012).

    Article  PubMed  CAS  Google Scholar 

  12. Replogle, J. M. et al. Aneuploidy increases resistance to chemotherapeutics by antagonizing cell division. Proc. Natl Acad. Sci. USA 117, 30566–30576 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Haslam, A., Olivier, T. & Prasad, V. How many people in the US are eligible for and respond to checkpoint inhibitors: an empirical analysis. Int. J. Cancer 156, 2352–2359 (2025).

  14. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Roh, W. et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci. Transl. Med. 9, eaah3560 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ock, C.-Y. et al. Genomic landscape associated with potential response to anti-CTLA-4 treatment in cancers. Nat. Commun. 8, 1050 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Alessi, J. V. et al. Multi-institutional analysis of aneuploidy and outcomes to chemoradiation and durvalumab in stage III non-small cell lung cancer. J. Immunother. Cancer 11, e007618 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Alessi, J. V. et al. Impact of aneuploidy and chromosome 9p loss on tumor immune microenvironment and immune checkpoint inhibitor efficacy in NSCLC. J. Thorac. Oncol. 18, 1524–1537 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Spurr, L. F. et al. Highly aneuploid non-small cell lung cancer shows enhanced responsiveness to concurrent radiation and immune checkpoint blockade. Nat. Cancer 3, 1498–1512 (2022).

    Article  PubMed  CAS  Google Scholar 

  20. Spurr, L. F., Weichselbaum, R. R. & Pitroda, S. P. Tumor aneuploidy predicts survival following immunotherapy across multiple cancers. Nat. Genet. 54, 1782–1785 (2022).

    Article  PubMed  CAS  Google Scholar 

  21. Spurr, L. F. & Pitroda, S. P. Clinical and molecular correlates of tumor aneuploidy in metastatic non-small cell lung cancer. Sci. Rep. 14, 19375 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jang, H., Hur, Y. & Lee, H. Identification of cancer-driver genes in focal genomic alterations from whole genome sequencing data. Sci. Rep. 6, 25582 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lukow, D. A. et al. Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Dev. Cell 56, 2427–2439 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl Acad. Sci. USA 107, 16910–16915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Spurr, L. F. et al. Quantification of aneuploidy in targeted sequencing data using ASCETS. Bioinformatics 37, 2461–2463 (2021).

    Article  PubMed  CAS  Google Scholar 

  27. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput. Biol. 12, e1004873 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Boeva, V. et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 28, 423–425 (2012).

    Article  PubMed  CAS  Google Scholar 

  30. Shen, R. & Seshan, V. E. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 44, e131 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Babadi, M. et al. GATK-gCNV enables the discovery of rare copy number variants from exome sequencing data. Nat. Genet. 55, 1589–1597 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Adalsteinsson, V. A. et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 8, 1324 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Favero, F. et al. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. Ann. Oncol. 26, 64–70 (2015).

    Article  PubMed  CAS  Google Scholar 

  34. Ha, G. et al. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. Genome Res. 24, 1881–1893 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ballman, K. V. Biomarker: predictive or prognostic? J. Clin. Oncol. 33, 3968–3971 (2015).

    Article  PubMed  CAS  Google Scholar 

  36. Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Marabelle, A. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353–1365 (2020).

    Article  PubMed  CAS  Google Scholar 

  38. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Mansfield, A. S. et al. Heterogeneity of programmed cell death ligand 1 expression in multifocal lung cancer. Clin. Cancer Res. 22, 2177–2182 (2016).

    Article  PubMed  CAS  Google Scholar 

  42. Haragan, A. et al. Heterogeneity of PD-L1 expression in non-small cell lung cancer: implications for specimen sampling in predicting treatment response. Lung Cancer 134, 79–84 (2019).

    Article  Google Scholar 

  43. Lu, S. et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 5, 1195–1204 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim, H. S. et al. Genomic scoring to determine clinical benefit of immunotherapy by targeted sequencing. Eur. J. Cancer 120, 65–74 (2019).

    Article  PubMed  CAS  Google Scholar 

  45. Chang, T.-G. et al. Optimizing cancer immunotherapy response prediction by tumor aneuploidy score and fraction of copy number alterations. npj Precis. Oncol. 7, 54 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Liu, L. et al. Combination of TMB and CNA stratifies prognostic and predictive responses to immunotherapy across metastatic cancer. Clin. Cancer Res. 25, 7413–7423 (2019).

    Article  PubMed  CAS  Google Scholar 

  47. Asleh, K. & Ouellette, R. J. Tumor copy number alteration burden as a predictor for resistance to immune checkpoint blockade across different cancer types. Cancers 16, 732 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).

    Article  PubMed  CAS  Google Scholar 

  49. Han, G. et al. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. Nat. Commun. 12, 5606 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. William, W. N. et al. Immune evasion in HPV head and neck precancer–cancer transition is driven by an aneuploid switch involving chromosome 9p loss. Proc. Natl Acad. Sci. USA 118, e2022655118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhao, X. et al. Somatic 9p24.1 alterations in HPV head and neck squamous cancer dictate immune microenvironment and anti-PD-1 checkpoint inhibitor activity. Proc. Natl Acad. Sci. USA 119, e2213835119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ebot, E. M. et al. Deletions on 9p21 are associated with worse outcomes after anti-PD-1/PD-L1 monotherapy but not chemoimmunotherapy. npj Precis. Oncol. 6, 44 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Andor, N. et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 22, 105–113 (2016).

    Article  PubMed  CAS  Google Scholar 

  54. Birkbak, N. J. et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71, 3447–3452 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lu, Z. et al. Tumor copy-number alterations predict response to immune-checkpoint-blockade in gastrointestinal cancer. J. Immunother. Cancer 8, e000374 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sia, D. et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 153, 812–826 (2017).

    Article  PubMed  CAS  Google Scholar 

  58. Shimada, S. et al. Comprehensive molecular and immunological characterization of hepatocellular carcinoma. EBioMedicine 40, 457–470 (2019).

    Article  PubMed  Google Scholar 

  59. Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Alcaraz, A. et al. Aneuploidy and aneusomy of chromosome 7 detected by fluorescence in situ hybridization are markers of poor prognosis in prostate cancer. Cancer Res. 54, 3998–4002 (1994).

    PubMed  CAS  Google Scholar 

  61. Kallioniemi, O.-P. et al. Aneuploid DNA content and high S-phase fraction of tumour cells are related to poor prognosis in patients with primary breast cancer. Eur. J. Cancer Clin. Oncol. 23, 277–282 (1987).

    Article  PubMed  CAS  Google Scholar 

  62. Van Mackelenbergh, M. T. et al. Pathologic complete response and individual patient prognosis after neoadjuvant chemotherapy plus anti-human epidermal growth factor receptor 2 therapy of human epidermal growth factor receptor 2-positive early breast cancer. J. Clin. Oncol. 41, 2998–3008 (2023).

    Article  PubMed  Google Scholar 

  63. Forde, P. M. et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 386, 1973–1985 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Senthi, S., Lagerwaard, F. J., Haasbeek, C. J., Slotman, B. J. & Senan, S. Patterns of disease recurrence after stereotactic ablative radiotherapy for early stage non-small-cell lung cancer: a retrospective analysis. Lancet Oncol. 13, 802–809 (2012).

    Article  PubMed  Google Scholar 

  65. Chang, J. Y. et al. Stereotactic ablative radiotherapy with or without immunotherapy for early-stage or isolated lung parenchymal recurrent node-negative non-small-cell lung cancer: an open-label, randomised, phase 2 trial. Lancet 402, 871–881 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pircher, A. et al. 117O Stereotactic body radiotherapy (SBRT) with pembrolizumab (pembro) for unresected stage I/II non-small cell lung cancer (NSCLC): the randomized, double-blind, phase III KEYNOTE-867 study. Immuno-Oncol. Technol. 24, 100746 (2024).

    Article  Google Scholar 

  67. Gross, N. D. et al. Neoadjuvant cemiplimab for stage II to IV cutaneous squamous-cell carcinoma. N. Engl. J. Med. 387, 1557–1568 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Blank, C. U. et al. Neoadjuvant nivolumab and ipilimumab in resectable stage III melanoma. N. Engl. J. Med. 391, 1696–1708 (2024).

    Article  PubMed  CAS  Google Scholar 

  69. Topalian, S. L. et al. Neoadjuvant nivolumab for patients with resectable merkel cell carcinoma in the CheckMate 358 trial. J. Clin. Oncol. 38, 2476–2487 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Cercek, A. et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N. Engl. J. Med. 386, 2363–2376 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Cercek, A. et al. Mismatch repair-deficient rectal cancer and resistance to neoadjuvant chemotherapy. Clin. Cancer Res. 26, 3271–3279 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Altorki, N. K. et al. Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial. Lancet Oncol. 22, 824–835 (2021).

    Article  PubMed  CAS  Google Scholar 

  73. Cosper, P. F., Copeland, S. E., Tucker, J. B. & Weaver, B. A. Chromosome missegregation as a modulator of radiation sensitivity. Semin. Radiat. Oncol. 32, 54–63 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jia, Q. et al. Mutational burden and chromosomal aneuploidy synergistically predict survival from radiotherapy in non-small cell lung cancer. Commun. Biol. 4, 131 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Bakhoum, S. F. et al. Numerical chromosomal instability mediates susceptibility to radiation treatment. Nat. Commun. 6, 5990 (2015).

    Article  PubMed  CAS  Google Scholar 

  76. Wei, B. et al. Comprehensive analysis of aneuploidy status and its effect on the efficacy of EGFR-TKIs in lung cancer. J. Thorac. Dis. 14, 625–634 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Goodman, A. M. et al. Assessing CAR T-cell therapy response using genome-wide sequencing of cell-free DNA in patients with B-cell lymphomas. Transplant. Cell. Ther. 28, 30.e1–30.e7 (2022).

    Article  PubMed  CAS  Google Scholar 

  78. Girish, V. et al. Oncogene-like addiction to aneuploidy in human cancers. Science 381, eadg4521 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Boudhraa, Z. et al. NR1D1 regulation by Ran GTPase via miR4472 identifies an essential vulnerability linked to aneuploidy in ovarian cancer. Oncogene 41, 309–320 (2022).

    Article  PubMed  CAS  Google Scholar 

  80. Quinton, R. J. et al. Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. Nature 590, 492–497 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Cohen-Sharir, Y. et al. Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature 590, 486–491 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Marquis, C. et al. Chromosomally unstable tumor cells specifically require KIF18A for proliferation. Nat. Commun. 12, 1213 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Phillips, A. F. et al. Targeting chromosomally unstable tumors with a selective KIF18A inhibitor. Nat. Commun. 16, 307 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Payton, M. et al. Small-molecule inhibition of kinesin KIF18A reveals a mitotic vulnerability enriched in chromosomally unstable cancers. Nat. Cancer 5, 66–84 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Agata, Y. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8, 765–772 (1996).

    Article  PubMed  CAS  Google Scholar 

  86. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Yokosuka, T. et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J. Exp. Med. 209, 1201–1217 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5, 1365–1369 (1999).

    Article  PubMed  CAS  Google Scholar 

  89. Lau, J. et al. Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nat. Commun. 8, 14572 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

  91. Read, S., Malmström, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

  92. Linsley, P. S. et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561–569 (1991).

    Article  PubMed  CAS  Google Scholar 

  93. Van Der Merwe, P. A., Bodian, D. L., Daenke, S., Linsley, P. & Davis, S. J. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J. Exp. Med. 185, 393–404 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Linsley, P. S. et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793–801 (1994).

    Article  PubMed  CAS  Google Scholar 

  95. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  PubMed  CAS  Google Scholar 

  96. Hellmann, M. D. et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 381, 2020–2031 (2019).

    Article  PubMed  CAS  Google Scholar 

  97. Doroshow, D. B. et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021).

    Article  PubMed  CAS  Google Scholar 

  98. André, T. et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 383, 2207–2218 (2020).

    Article  PubMed  Google Scholar 

  99. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ott, P. A. et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J. Clin. Oncol. 37, 318–327 (2019).

    Article  PubMed  Google Scholar 

  101. Dawson, N. V. & Weiss, R. Dichotomizing continuous variables in statistical analysis: a practice to avoid. Med. Decis. Making 32, 225–226 (2012).

    Article  PubMed  Google Scholar 

  102. Efron, B. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979).

    Article  Google Scholar 

  103. Garcia, E. P. et al. Validation of OncoPanel: a targeted next-generation sequencing assay for the detection of somatic variants in cancer. Arch. Pathol. Lab. Med. 141, 751–758 (2017).

    Article  PubMed  CAS  Google Scholar 

  104. Teer, J. K. et al. Evaluating somatic tumor mutation detection without matched normal samples. Hum. Genomics 11, 22 (2017).

    Google Scholar 

  105. Chowell, D. et al. Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nat. Biotechnol. 40, 499–506 (2022).

    Article  PubMed  CAS  Google Scholar 

  106. Chang, T.-G. et al. LORIS robustly predicts patient outcomes with immune checkpoint blockade therapy using common clinical, pathologic and genomic features. Nat. Cancer 5, 1158–1175 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sdeor, E., Okada, H., Saad, R., Ben-Yishay, T. & Ben-David, U. Aneuploidy as a driver of human cancer. Nat. Genet. 56, 2014–2026 (2024).

    Article  PubMed  CAS  Google Scholar 

  108. Schmid, P. et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 382, 810–821 (2020).

    Article  PubMed  CAS  Google Scholar 

  109. Cheng, Y. et al. Durvalumab after chemoradiotherapy in limited-stage small-cell lung cancer. N. Engl. J. Med. 391, 1313–1327 (2024).

    Article  PubMed  CAS  Google Scholar 

  110. Lee, N. Y. et al. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 22, 450–462 (2021).

    Article  PubMed  CAS  Google Scholar 

  111. Machiels, J.-P. et al. Pembrolizumab plus concurrent chemoradiotherapy versus placebo plus concurrent chemoradiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck (KEYNOTE-412): a randomised, double-blind, phase 3 trial. Lancet Oncol. 25, 572–587 (2024).

    Article  PubMed  CAS  Google Scholar 

  112. Liu, X. et al. Induction-concurrent chemoradiotherapy with or without sintilimab in patients with locoregionally advanced nasopharyngeal carcinoma in China (CONTINUUM): a multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial. Lancet 403, 2720–2731 (2024).

    Article  PubMed  CAS  Google Scholar 

  113. Liu, S.-L. et al. Neoadjuvant and adjuvant toripalimab for locoregionally advanced nasopharyngeal carcinoma: a randomised, single-centre, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 25, 1563–1575 (2024).

    Article  PubMed  CAS  Google Scholar 

  114. Lorusso, D. et al. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): a randomised, double-blind, phase 3 clinical trial. Lancet 403, 1341–1350 (2024).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

S.P.P. is supported by the LUNGevity Foundation, the Falk Medical Research Trust and the American Lung Association. S.P.P. and R.R.W. receive funding from the National Institutes of Health (U54-CA274291 ROBIN grant) and the Ludwig Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

D.H. wrote the initial draft of the manuscript and designed the figure with input from all authors. L.F.S. contributed his technical expertise on the quantification of tumor aneuploidy. D.H., L.F.S., R.R.W. and S.P.P. provided critical revisions to the manuscript.

Corresponding author

Correspondence to Sean P. Pitroda.

Ethics declarations

Competing interests

R.R.W. has stock and other ownership interests with Boost Therapeutics, ImmVira, RefleXion Pharmaceuticals, Coordination Pharmaceuticals, Magi Therapeutics and Oncosenescence. He has served in a consulting or advisory role for Aettis, AstraZeneca, Coordination Pharmaceuticals, Genus, Merck Serono, Nanoproteagen, NKMax America and Shuttle Pharmaceuticals. He has received research grant funding from Varian and Regeneron. He has received compensation including travel, accommodations or expense reimbursement from AstraZeneca, Boehringer Ingelheim and Merck Serono. S.P.P. and R.R.W. own a patent related to this work (PCT/US23/81165). S.P.P. and R.R.W. are cofounders of PersonaDx. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Teresa Davoli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Spurr, L.F., Weichselbaum, R.R. et al. Tumor aneuploidy as a prognostic and predictive biomarker in immune checkpoint blockade. Nat Genet 57, 1802–1811 (2025). https://doi.org/10.1038/s41588-025-02226-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-025-02226-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer