Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

HER2 and urothelial carcinoma: current understanding and future directions

Abstract

Human epidermal growth factor receptor 2 (HER2) has emerged as a crucial biomarker across various cancers, shaping therapeutic strategies and prognostic evaluations. In urothelial carcinoma, HER2 positivity rates can reach up to 68% when HER2-low tumours (immunohistochemistry 1+) are included in the analysis. HER2 overexpression and ERBB2 genomic alterations have been linked to advanced disease stages and poor outcomes in urothelial carcinoma. Emerging evidence suggests that HER2-low tumours might be a distinct and actionable subgroup. Accurate and consistent assessment of HER2 status is increasingly vital to identify patients likely to benefit from HER2-targeted therapies, raising interest in refining thresholds for HER2 expression, aiming to predict treatment response. HER2 heterogeneity across stages and histological subtypes complicates its evaluation, with definitions of HER2 positivity differing between clinical trials and treatments. In urothelial carcinoma, HER2-targeted therapies, such as tyrosine kinase inhibitors, monoclonal antibodies and antibody–drug conjugate (ADCs) have been explored. Unlike tyrosine kinase inhibitors and monoclonal antibodies, which act through HER2-related pathways, ADCs use HER2 as a target but achieve efficacy through additional mechanisms, enabling their activity even at low HER2 expression levels. Trastuzumab deruxtecan, a novel anti-HER2 ADC, has received FDA tumour-agnostic approval for unresectable or metastatic HER2+ solid tumours, including urothelial carcinoma, after prior therapies. Interactions between HER2 protein and putative biomarkers such as EGFR, NECTIN4, PDL1 and FGFR3 genomic alterations might influence therapeutic outcomes, offering opportunities for improved patient selection and innovative combination strategies.

Key points

  • Human epidermal growth factor receptor 2 (HER2) assessment in urothelial carcinoma is highly inconsistent and heterogeneous across studies. Establishing a standardized, universally accepted HER2 immunohistochemical testing framework is crucial for achieving reliable and reproducible results.

  • HER2 positivity in urothelial carcinoma varies considerably by anatomical location, disease stage, histological subtype, molecular classification and between matched primary and metastatic tumours, complicating consistent evaluation and interpretation.

  • The prognostic and predictive value of HER2 or ERBB2 status in urothelial carcinoma remains uncertain. Clinical trials of anti-HER2 monoclonal antibodies and small-molecule inhibitors, such as tyrosine kinase inhibitors, have largely produced inconclusive or negative outcomes.

  • Promising early data on anti-HER2 antibody–drug conjugates, as observed in other cancers, suggest that their unique mechanism — leveraging HER2 as a docking target independent of its signalling function — could overcome prior therapeutic challenges.

  • Encouraging initial results with antibody–drug conjugates in HER2-low and HER2− tumours suggest that HER2 expression levels could be a better predictor of treatment response than traditional positivity thresholds,.

  • HER2 interactions with other biomarkers might enable innovative dual or sequential combination therapies and improve patient selection for emerging front-line and/or salvage treatments in advanced urothelial carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of action and immunological interplay of HER2-targeted agents in urothelial carcinoma.
Fig. 2: Timeline of tested anti-HER2 treatment development in urothelial carcinoma.

Similar content being viewed by others

References

  1. Bai, X. et al. Structure and dynamics of the EGFR/HER2 heterodimer. Cell Discov. 9, 18 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moasser, M. M. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26, 6469–6487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu, S. et al. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nat. Cell Biol. 21, 1027–1040 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Ong, L.-T. et al. IFI16-dependent STING signaling is a crucial regulator of anti-HER2 immune response in HER2+ breast cancer. Proc. Natl Acad. Sci. USA 119, e2201376119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Onkar, S. S. et al. The great immune escape: understanding the divergent immune response in breast cancer subtypes. Cancer Discov. 13, 23–40 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Najjar, S. & Allison, K. H. Updates on breast biomarkers. Virchows Arch. Int. J. Pathol. 480, 163–176 (2022).

    Article  CAS  Google Scholar 

  7. Lei, Y.-Y. et al. The clinicopathological parameters and prognostic significance of HER2 expression in gastric cancer patients: a meta-analysis of literature. World J. Surg. Oncol. 15, 68 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. de Uchôa, B. C. M. et al. HER2-low and gastric cancer: a prognostic biomarker? J. Clin. Oncol. https://doi.org/10.1200/JCO.2021.39.15_suppl.e16086 (2021).

    Article  Google Scholar 

  9. Riudavets, M., Sullivan, I., Abdayem, P., Planchard, D. Targeting HER2 in non-small-cell lung cancer (NSCLC): a glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations. ESMD Open 6, 100260.

  10. Fontugne, J. et al. Transcriptomic profiling of upper tract urothelial carcinoma: bladder cancer consensus classification relevance, molecular heterogeneity, and differential immune signatures. Mod. Pathol. 36, 100300 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Tomiyama, E. et al. Comparison of molecular profiles of upper tract urothelial carcinoma vs. urinary bladder cancer in the era of targeted therapy: a narrative review. Transl. Androl. Urol. 11, 1747–1761 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Koshkin, V. S., O’Donnell, P., Yu, E. Y. & Grivas, P. Systematic review: targeting HER2 in bladder cancer. Bladder Cancer 5, 1–12 (2019).

    Article  Google Scholar 

  13. Yoon, J. & Oh, D.-Y. HER2-targeted therapies beyond breast cancer — an update. Nat. Rev. Clin. Oncol. 21, 675–700 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Soria, F. et al. HER2 overexpression is associated with worse outcomes in patients with upper tract urothelial carcinoma (UTUC). World J. Urol. 35, 251–259 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Tsai, Y.-S., Tzai, T.-S., Chow, N.-H. & Wu, C.-L. Frequency and clinicopathologic correlates of ErbB1, ErbB2, and ErbB3 immunoreactivity in urothelial tumors of upper urinary tract. Urology 66, 1197–1202 (2005).

    Article  PubMed  Google Scholar 

  16. Zhou, L. et al. HER2 expression associated with clinical characteristics and prognosis of urothelial carcinoma in a Chinese population. Oncologist 28, e617–e624 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Izquierdo, L., Truan, D., Mengual, L., Mallofré, C. & Alcaraz, A. HER-2/AKT expression in upper urinary tract urothelial carcinoma: prognostic implications. Anticancer. Res. 30, 2439–2445 (2010).

    PubMed  Google Scholar 

  18. Missaoui, N. et al. Significance of p53, p27, Ki-67, E-cadherin, and HER2 expression in upper urinary tract urothelial carcinoma. J. Egypt. Natl Cancer Inst. 32, 36 (2020).

    Article  Google Scholar 

  19. Bjerkehagen, B., Fosså, S. D., Raabe, N., Holm, R. & Nesland, J. M. Transitional cell carcinoma of the renal pelvis and its expression of p53 protein, c-erbB-2 protein, neuron-specific enolase, Phe 5, chromogranin, laminin and collagen type IV. Eur. Urol. 26, 334–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171, 540–556.e25 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, K. et al. Modeling biological and genetic diversity in upper tract urothelial carcinoma with patient derived xenografts. Nat. Commun. 11, 1975 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scherrer, E., Kang, A., Bloudek, L. M. & Koshkin, V. S. HER2 expression in urothelial carcinoma, a systematic literature review. Front. Oncol. 12, 1011885 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prat, A. et al. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 24, S26–S35 (2015).

    Article  PubMed  Google Scholar 

  24. Isharwal, S. et al. Intratumoral heterogeneity of ERBB2 amplification and HER2 expression in micropapillary urothelial carcinoma. Hum. Pathol. 77, 63–69 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Behzatoğlu, K., Yörükoğlu, K., Demir, H. & Bal, N. Human epidermal growth factor receptor 2 overexpression in micropapillary and other variants of urothelial carcinoma. Eur. Urol. Focus 4, 399–404 (2018).

    Article  PubMed  Google Scholar 

  26. Wucherpfennig, S. et al. Evaluation of therapeutic targets in histological subtypes of bladder cancer. Int. J. Mol. Sci. 22, 11547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kiss, B. et al. Her2 alterations in muscle-invasive bladder cancer: patient selection beyond protein expression for targeted therapy. Sci. Rep. 7, 42713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Albarrán, V. et al. Her-2 targeted therapy in advanced urothelial cancer: from monoclonal antibodies to antibody-drug conjugates. Int. J. Mol. Sci. 23, 12659 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Olsson, H., Fyhr, I.-M., Hultman, P. & Jahnson, S. HER2 status in primary stage T1 urothelial cell carcinoma of the urinary bladder. Scand. J. Urol. Nephrol. 46, 102–107 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Cormio, L. et al. Human epidermal growth factor receptor 2 expression is more important than bacillus Calmette Guerin treatment in predicting the outcome of T1G3 bladder cancer. Oncotarget 8, 25433–25441 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li, S. et al. Prognostic value of HER2 expression levels for upper tract urothelial carcinoma. J. Clin. Oncol. 40, 557–557 (2022).

    Article  Google Scholar 

  32. Chen, P. C.-H., Yu, H.-J., Chang, Y.-H. & Pan, C.-C. Her2 amplification distinguishes a subset of non-muscle-invasive bladder cancers with a high risk of progression. J. Clin. Pathol. 66, 113–119 (2013).

    Article  PubMed  Google Scholar 

  33. Kim, S. W. et al. HER2 overexpression predicts pathological T2 stage and improved survival in de novo muscle-invasive bladder cancer after immediate radical cystectomy: a retrospective cohort study. Int. J. Surg. 110, 847–858 (2024).

    Article  PubMed  Google Scholar 

  34. Kolla, S. B. et al. Prognostic significance of Her2/neu overexpression in patients with muscle invasive urinary bladder cancer treated with radical cystectomy. Int. Urol. Nephrol. 40, 321–327 (2008).

    Article  PubMed  Google Scholar 

  35. Fleischmann, A., Rotzer, D., Seiler, R., Studer, U. E. & Thalmann, G. N. Her2 amplification is significantly more frequent in lymph node metastases from urothelial bladder cancer than in the primary tumours. Eur. Urol. 60, 350–357 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Jimenez, R. E. et al. Her-2/neu overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic significance and comparative analysis in primary and metastatic tumors. Clin. Cancer Res. 7, 2440–2447 (2001).

    CAS  PubMed  Google Scholar 

  37. Grigg, C. M. et al. Human epidermal growth factor receptor 2 overexpression is frequently discordant between primary and metastatic urothelial carcinoma and is associated with intratumoral human epidermal growth factor receptor 2 heterogeneity. Hum. Pathol. 107, 96–103 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aggen, D. H. et al. HER2 and PD-L1 immunohistochemistry (IHC) expression, and HER2 genomic alterations: associations and clinical outcomes for advanced bladder cancer. J. Clin. Oncol. 42, 538–538 (2024).

    Article  Google Scholar 

  40. Bang, Y.-J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Jaiyesimi, I. A. et al. Therapy for stage IV non-small-cell lung cancer with driver alterations: ASCO living guideline, version 2023.2. J. Clin. Oncol. 42, e23–e43.

  42. Shah, M. A. et al. Immunotherapy and targeted therapy for advanced gastroesophageal cancer: ASCO guideline. J. Clin. Oncol. 41, 1470–1491 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Giordano, S. H. et al. Systemic therapy for advanced human epidermal growth factor receptor 2-positive breast cancer: ASCO guideline update. J. Clin. Oncol. 40, 2612–2635 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Cervantes, A. et al. Metastatic colorectal cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann. Oncol. 34, 10–32 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Hussain, M. H. A. et al. Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II National Cancer Institute trial. J. Clin. Oncol. 25, 2218–2224 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Oudard, S. et al. Multicentre randomised phase II trial of gemcitabine+platinum, with or without trastuzumab, in advanced or metastatic urothelial carcinoma overexpressing Her2. Eur. J. Cancer 51, 45–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Wülfing, C. et al. A single-arm, multicenter, open-label phase 2 study of lapatinib as the second-line treatment of patients with locally advanced or metastatic transitional cell carcinoma. Cancer 115, 2881–2890 (2009).

    Article  PubMed  Google Scholar 

  48. Galsky, M. D. et al. Target-specific, histology-independent, randomized discontinuation study of lapatinib in patients with HER2-amplified solid tumors. Invest. New Drugs 30, 695–701 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Tang, S. et al. Single arm phase II study of docetaxel and lapatinib in metastatic urothelial cancer: USC trial 4B-10-4. J. Clin. Oncol. 34, 424–424 (2016).

    Article  Google Scholar 

  50. Powles, T. et al. Phase III, double-blind, randomized trial that compared maintenance lapatinib versus placebo after first-line chemotherapy in patients with human epidermal growth factor receptor 1/2-positive metastatic bladder cancer. J. Clin. Oncol. 35, 48–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Choudhury, N. J. et al. Afatinib activity in platinum-refractory metastatic urothelial carcinoma in patients with ERBB alterations. J. Clin. Oncol. 34, 2165–2171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bryce, A. H. et al. Pertuzumab plus trastuzumab for HER2-positive metastatic urothelial cancer (mUC): preliminary data from MyPathway. J. Clin. Oncol. 35, 348–348 (2017).

    Article  Google Scholar 

  53. de Vries, E. G. E. et al. Phase II study (KAMELEON) of single-agent T-DM1 in patients with HER2-positive advanced urothelial bladder cancer or pancreatic cancer/cholangiocarcinoma. Cancer Med. 12, 12071–12083 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhou, I., Plana, D. & Palmer, A. C. Tumor-specific activity of precision medicines in the NCI-MATCH trial. Clin. Cancer Res. 30, 786–792 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sweeney, C. J. et al. MyPathway human epidermal growth factor receptor 2 basket study: pertuzumab + trastuzumab treatment of a tissue-agnostic cohort of patients with human epidermal growth factor receptor 2-altered advanced solid tumors. J. Clin. Oncol. 42, 258–265 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. FDA grants accelerated approval to fam-trastuzumab deruxtecan-nxki (Enhertu) for unresectable or metastatic HER2-positive solid tumors. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-fam-trastuzumab-deruxtecan-nxki-unresectable-or-metastatic-her2 (2024).

  57. Meric-Bernstam, F. et al. Efficacy and safety of trastuzumab deruxtecan in patients with HER2-expressing solid tumors: primary results from the DESTINY-PanTumor02 phase II trial. J. Clin. Oncol. 42, 47–58 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Hamilton, E. et al. Trastuzumab deruxtecan with nivolumab in HER2-expressing metastatic breast or urothelial cancer: analysis of the phase Ib DS8201-A-U105 study. Clin. Cancer Res. 30, 5548–5558 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sheng, X. et al. Efficacy and safety of disitamab vedotin in patients with human epidermal growth factor receptor 2-positive locally advanced or metastatic urothelial carcinoma: a combined analysis of two phase II clinical trials. J. Clin. Oncol. 42, 1391–1402 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Powles, T. et al. Phase 2 clinical study evaluating the efficacy and safety of disitamab vedotin with or without pembrolizumab in patients with HER2-expressing urothelial carcinoma (RC48G001). J. Clin. Oncol. 41, TPS594 (2023).

    Article  Google Scholar 

  61. Galsky, M. D. et al. 1967MO Preliminary efficacy and safety of disitamab vedotin (DV) with pembrolizumab (P) in treatment (Tx)-naive HER2-expressing, locally advanced or metastatic urothelial carcinoma (la/mUC): RC48G001 cohort C. Ann. Oncol. 35, S1138–S1139 (2024).

    Article  Google Scholar 

  62. Wolff, A. C. et al. Human epidermal growth factor receptor 2 testing in breast cancer: ASCO — College of American Pathologists guideline update. J. Clin. Oncol. 41, 3867–3872 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Bartley, A. N. et al. HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: guideline from the College of American Pathologists, American Society for Clinical Pathology, and the American Society of Clinical Oncology. J. Clin. Oncol. 35, 446–464 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. List of cleared or approved companion diagnostic devices (in vitro and imaging tools). FDA https://www.fda.gov/medical-devices/in-vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-in-vitro-and-imaging-tools (2025).

  65. Buza, N., English, D. P., Santin, A. D. & Hui, P. Toward standard HER2 testing of endometrial serous carcinoma: 4-year experience at a large academic center and recommendations for clinical practice. Mod. Pathol. 26, 1605–1612 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Liu, F. et al. Assessment of two different HER2 scoring systems and clinical relevance for colorectal cancer. Virchows Arch. 476, 391–398 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Hagemann, I. S. et al. Current laboratory testing practices for assessment of ERBB2/HER2 in endometrial serous carcinoma and colorectal carcinoma. Arch. Pathol. Lab. Med. 147, 1148–1157 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Valtorta, E. et al. Assessment of a HER2 scoring system for colorectal cancer: results from a validation study. Mod. Pathol. 28, 1481–1491 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Dumbrava, E. E. I. et al. Targeting ERBB2 (HER2) amplification identified by next-generation sequencing in patients with advanced or metastatic solid tumors beyond conventional indications. JCO Precis. Oncol. 3, PO.18.00345 (2019).

    PubMed  PubMed Central  Google Scholar 

  70. Wolff, A. C. et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 31, 3997–4013 (2013).

    Article  PubMed  Google Scholar 

  71. Pahuja, K. B. et al. Actionable activating oncogenic ERBB2/HER2 transmembrane and juxtamembrane domain mutations. Cancer Cell 34, 792–806.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Meric-Bernstam, F. et al. Advances in HER2-targeted therapy: novel agents and opportunities beyond breast and gastric cancer. Clin. Cancer Res. 25, 2033–2041 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Goto, K. et al. Trastuzumab deruxtecan in patients with HER2-mutant metastatic non-small-cell lung cancer: primary results from the randomized, phase II DESTINY-Lung02 trial. J. Clin. Oncol. 41, 4852–4863 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Smit, E. F. et al. Trastuzumab deruxtecan in patients with metastatic non-small-cell lung cancer (DESTINY-Lung01): primary results of the HER2-overexpressing cohorts from a single-arm, phase 2 trial. Lancet Oncol. 25, 439–454 (2024).

    Article  CAS  PubMed  Google Scholar 

  75. Riely, G. J. et al. Non-small cell lung cancer version 4.2024. NCCN clinical practice guidelines in oncology (NCCN Guidelines Practice Guidelines in Oncology): non-small cell lung cancer. J. Natl Compr. Canc. Netw. 22, 249–274 (2024).

    Article  CAS  PubMed  Google Scholar 

  76. Ross, J. S. et al. A high frequency of activating extracellular domain ERBB2 (HER2) mutation in micropapillary urothelial carcinoma. Clin. Cancer Res. 20, 68–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Ross, J. S. et al. Advanced urothelial carcinoma: next-generation sequencing reveals diverse genomic alterations and targets of therapy. Mod. Pathol. 27, 271–280 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Wu, L. et al. Landscape of somatic alterations in large-scale solid tumors from an Asian population. Nat. Commun. 13, 4264 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hyman, D. M. et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 554, 189–194 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N. Engl. J. Med. 387, 9–20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Curigliano, G. et al. Trastuzumab deruxtecan (T-DXd) vs physician’s choice of chemotherapy (TPC) in patients (pts) with hormone receptor-positive (HR+), human epidermal growth factor receptor 2 (HER2)-low or HER2-ultralow metastatic breast cancer (mBC) with prior endocrine therapy (ET): primary results from DESTINY-Breast06 (DB-06). J. Clin. Oncol. 42, LBA1000 (2024).

    Article  Google Scholar 

  83. Uzunparmak, B. et al. HER2-low expression in patients with advanced or metastatic solid tumors. Ann. Oncol. 34, 1035–1046 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Nakada, T. et al. Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads. Bioorg. Med. Chem. Lett. 26, 1542–1545 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Ogitani, Y., Hagihara, K., Oitate, M., Naito, H. & Agatsuma, T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 107, 1039–1046 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Culine, S. et al. Combining paclitaxel and lapatinib as second-line treatment for patients with metastatic transitional cell carcinoma: a case series. Anticancer. Res. 32, 3949–3952 (2012).

    CAS  PubMed  Google Scholar 

  87. Narayan, V. et al. Cisplatin, gemcitabine, and lapatinib as neoadjuvant therapy for muscle-invasive bladder cancer. Cancer Res. Treat. 48, 1084–1091 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Cerbone, L. et al. Results from a phase I study of lapatinib with gemcitabine and cisplatin in advanced or metastatic bladder cancer: EORTC trial 30061. Oncology 90, 21–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Bedard, P. L. et al. Phase II study of afatinib in patients with tumors with human epidermal growth factor receptor 2-activating mutations: results from the national cancer institute-molecular analysis for therapy choice ECOG-ACRIN Trial (EAY131) subprotocol EAY131-B. JCO Precis. Oncol. 6, e2200165 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kwak, E. L. et al. Phase 2 trial of afatinib, an ErbB family blocker, in solid tumors genetically screened for target activation. Cancer 119, 3043–3051 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Font, A. et al. Phase II trial of afatinib in patients with advanced urothelial carcinoma with genetic alterations in ERBB1-3 (LUX-Bladder 1). Br. J. Cancer 130, 434–441 (2024).

    Article  CAS  PubMed  Google Scholar 

  92. Kim, M. et al. Phase II study of a trastuzumab biosimilar in combination with paclitaxel for HER2-positive recurrent or metastatic urothelial carcinoma: KCSG GU18-18. ESMO Open 8, 101588 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Connolly, R. M. et al. Trastuzumab and pertuzumab in patients with non-breast/gastroesophageal HER2-amplified tumors: results from the NCI-MATCH ECOG-ACRIN Trial (EAY131) subprotocol. J. Clin. Cancer Res. 30, 1273–1280 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Swain, S. M., Shastry, M. & Hamilton, E. Targeting HER2-positive breast cancer: advances and future directions. Nat. Rev. Drug Discov. 22, 101–126 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Conilh, L., Sadilkova, L., Viricel, W. & Dumontet, C. Payload diversification: a key step in the development of antibody–drug conjugates. J. Hematol. Oncol. 16, 3 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, B. T. et al. A phase 1/2 study of a first-in-human immune-stimulating antibody conjugate (ISAC) BDC-1001 in patients with advanced HER2-expressing solid tumors. J. Clin. Oncol. 41, 2538–2538 (2023).

    Article  Google Scholar 

  97. LeBlanc, H. et al. 605 Systemically administered HER2-targeted ISACs provoke a rapid, local response that engages the innate and adaptive arms of the immune system to eradicate tumors in preclinical models. J. Immunother. Cancer 8, A640 (2020).

    Google Scholar 

  98. Duvall, J. R. et al. Abstract 3503: XMT-2056, a HER2-targeted Immunosynthen STING-agonist antibody-drug conjugate, binds a novel epitope of HER2 and shows increased anti-tumor activity in combination with trastuzumab and pertuzumab. Cancer Res. 82, 3503 (2022).

    Article  Google Scholar 

  99. Shi, F. et al. Disitamab vedotin: a novel antibody-drug conjugates for cancer therapy. Drug Deliv. 29, 1335–1344 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Franceschini, T. et al. Immunohistochemical over-expression of HER2 does not always match with gene amplification in invasive bladder cancer. Pathol. Res. Pract. 216, 153012 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Bellmunt, J. et al. HER2 as a target in invasive urothelial carcinoma. Cancer Med. 4, 844–852 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nguyen, D. D. et al. The interplay of mutagenesis and ecDNA shapes urothelial cancer evolution. Nature 635, 219–228 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tarantino, P. et al. Evolution of low HER2 expression between early and advanced-stage breast cancer. Eur. J. Cancer 163, 35–43 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Pietzak, E. J. et al. Next-generation sequencing of nonmuscle invasive bladder cancer reveals potential biomarkers and rational therapeutic targets. Eur. Urol. 72, 952–959 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Coogan, C. L., Estrada, C. R., Kapur, S. & Bloom, K. J. HER-2/neu protein overexpression and gene amplification in human transitional cell carcinoma of the bladder. Urology 63, 786–790 (2004).

    Article  PubMed  Google Scholar 

  106. Jung, S. et al. The role of immunohistochemistry in the diagnosis of flat urothelial lesions: a study using CK20, CK5/6, P53, Cd138, and Her2/Neu. Ann. Diagn. Pathol. 18, 27–32 (2014).

    Article  PubMed  Google Scholar 

  107. Schwarz, S. et al. Value of multicolour fluorescence in situ hybridisation (UroVysion) in the differential diagnosis of flat urothelial lesions. J. Clin. Pathol. 61, 272–277 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Shah, N. J. et al. HER2 mutation and bladder cancer (BC): prevalence and clinical outcomes. J. Clin. Oncol. 42, 574–574 (2024).

    Article  Google Scholar 

  109. Nedjadi, T. et al. Prognostic value of HER2 status in bladder transitional cell carcinoma revealed by both IHC and BDISH techniques. BMC Cancer 16, 653 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ali, M. Y. et al. HER2/neu expression status of post BCG recurrent non-muscle-invasive bladder urothelial carcinomas in relation to their primary ones. Arch. Ital. Urol. Androl. 95, 11313 (2023).

    PubMed  Google Scholar 

  111. Tan, X. et al. Prognostic significance of HER2 expression in patients with bacillus Calmette-Guérin-exposed non-muscle-invasive bladder cancer. Eur. Urol. Oncol. 7, 760–769 (2024).

    Article  PubMed  Google Scholar 

  112. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT05495724?term=NCT05495724&rank=1 (2022).

  113. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT05996952?term=NCT05996952&rank=1 (2023).

  114. Koshkin, V. S. et al. Testing and interpretation of human epidermal growth factor receptor 2 protein expression and ERBB2 gene amplification in advanced urothelial carcinoma. JCO Precis. Oncol. 9, e2400879 (2025).

    Article  PubMed  Google Scholar 

  115. Hashimoto, M. et al. Immunohistochemical analysis of HER2, EGFR, and Nectin-4 expression in upper urinary tract urothelial carcinoma. Anticancer. Res. 43, 167–174 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Ehsani, L. & Osunkoya, A. O. Human epidermal growth factor receptor 2 expression in urothelial carcinoma of the renal pelvis: correlation with clinicopathologic parameters. Int. J. Clin. Exp. Pathol. 7, 2544–2550 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. Ye, J., Liao, X., Qiu, Y., Wei, Q. & Bao, Y. A systematic review and meta-analysis for human epidermal growth factor receptor 2 on upper tract urothelial carcinoma patients. Tumor J. 110, 25–33 (2024).

    Article  CAS  Google Scholar 

  118. Aumayr, K. et al. HER2 and TOP2A gene amplification and protein expression in upper tract urothelial carcinomas. Pathol. Oncol. Res. 24, 575–581 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Ye, J. et al. HER2 expression in upper tract urothelial carcinoma and the relationship with clinicopathological characteristics — an analysis of 155 patients in Southwest China. World J. Urol. 42, 521 (2024).

    Article  CAS  PubMed  Google Scholar 

  120. Gårdmark, T., Wester, K., De la Torre, M., Carlsson, J. & Malmström, P.-U. Analysis of HER2 expression in primary urinary bladder carcinoma and corresponding metastases. BJU Int. 95, 982–986 (2005).

    Article  PubMed  Google Scholar 

  121. Ye, J., Zhang, M. & Bao, Y. Discordance of HER2 expression in primary and recurrent/metastatic urothelial carcinoma in the upper tract. Asian J. Surg. 47, 3928–3929 (2024).

    Article  PubMed  Google Scholar 

  122. Bryant, D. et al. A real-world experience in pan-tumor testing for HER2 IHC in more than 65 000 solid tumors. JAMA Oncol. 26, e251791 (2025).

    Google Scholar 

  123. Guo, C. C. et al. Gene expression profile of the clinically aggressive micropapillary variant of bladder cancer. Eur. Urol. 70, 611–620 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li, J. et al. Comparison of tyrosine kinase receptors HER2, EGFR, and VEGFR expression in micropapillary urothelial carcinoma with invasive urothelial carcinoma. Target. Oncol. 10, 355–363 (2015).

    Article  PubMed  Google Scholar 

  125. Ching, C. B. et al. HER2 gene amplification occurs frequently in the micropapillary variant of urothelial carcinoma: analysis by dual-color in situ hybridization. Mod. Pathol. 24, 1111–1119 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Zinnall, U. et al. Micropapillary urothelial carcinoma: evaluation of HER2 status and immunohistochemical characterization of the molecular subtype. Hum. Pathol. 80, 55–64 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Moktefi, A. et al. Reappraisal of HER2 status in the spectrum of advanced urothelial carcinoma: a need of guidelines for treatment eligibility. Mod. Pathol. 31, 1270–1281 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Posada, J. M. et al. Characterizing the genomic landscape of the micropapillary subtype of urothelial carcinoma of the bladder harboring activating extracellular mutations of ERBB2. Mod. Pathol. 37, 100424 (2024).

    Article  CAS  PubMed  Google Scholar 

  129. Souza, A. L. D. et al. Clinical features of patients with MTAP-deleted bladder cancer. Am. J. Cancer Res. 13, 326 (2023).

    PubMed  PubMed Central  Google Scholar 

  130. Alhalabi, O. et al. MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers. Nat. Commun. 13, 1797 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Alhalabi, O. et al. Integrative clinical and genomic characterization of MTAP-deficient metastatic urothelial cancer. Eur. Urol. Oncol. 6, 228 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gao, J. et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404.e9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Han, G. et al. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. Nat. Commun. 12, 5606 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sanguedolce, F. et al. HER2 expression in bladder cancer: a focused view on its diagnostic, prognostic, and predictive role. Int. J. Mol. Sci. 24, 3720 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kim, B. et al. HER2 protein overexpression and gene amplification in plasmacytoid urothelial carcinoma of the urinary bladder. Dis. Markers 2016, 8463731 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Sjödahl, G. et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18, 3377–3386 (2012).

    Article  PubMed  Google Scholar 

  137. Damrauer, J. S. et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl Acad. Sci. USA 111, 3110–3115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Weinstein, J. N. et al. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Article  CAS  Google Scholar 

  140. Höglund, M. et al. The Lund taxonomy for bladder cancer classification — from gene expression clustering to cancer cell molecular phenotypes, and back again. J. Pathol. 259, 369–375 (2023).

    Article  PubMed  Google Scholar 

  141. Marzouka, N. et al. A validation and extended description of the Lund taxonomy for urothelial carcinoma using the TCGA cohort. Sci. Rep. 8, 3737 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Moustakas, G. et al. HER-2 overexpression is a negative predictive factor for recurrence in patients with non-muscle-invasive bladder cancer on intravesical therapy. J. Int. Med. Res. 48, 300060519895847 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Lim, S. D. et al. Clinical significance of substaging and HER2 expression in papillary nonmuscle invasive urothelial cancers of the urinary bladder. J. Korean Med. Sci. 30, 1068–1077 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ding, W. et al. Human epidermal growth factor receptor 2: a significant indicator for predicting progression in non-muscle-invasive bladder cancer especially in high-risk groups. World J. Urol. 33, 1951–1957 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Chae, H. K. et al. Identification of new prognostic markers and therapeutic targets for non-muscle invasive bladder cancer: HER2 as a potential target antigen. Front. Immunol. 13, 903297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sato, K. et al. An immunohistologic evaluation of C-erbB-2 gene product in patients with urinary bladder carcinoma. Cancer 70, 2493–2498 (1992).

    Article  CAS  PubMed  Google Scholar 

  147. Zhao, J. et al. Prognostic role of HER2 expression in bladder cancer: a systematic review and meta-analysis. Int. Urol. Nephrol. 47, 87–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Bongiovanni, L. et al. HER-2 immunohistochemical expression as prognostic marker in high-grade T1 bladder cancer (T1G3). Arch. Ital. Urol. Androl. 85, 73–77 (2013).

    Article  PubMed  Google Scholar 

  149. Rodriguez Pena, M. D. C. et al. Immunohistochemical assessment of basal and luminal markers in non-muscle invasive urothelial carcinoma of bladder. Virchows Arch. Int. J. Pathol. 475, 349–356 (2019).

    Article  CAS  Google Scholar 

  150. Hadadi, A. et al. The genomic landscape of urothelial carcinoma with high and low ERBB2 expression. Cancers 15, 5721 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Breyer, J. et al. ERBB2 expression as potential risk-stratification for early cystectomy in patients with pT1 bladder cancer and concomitant carcinoma in situ. Urol. Int. 98, 282–289 (2016).

    Article  PubMed  Google Scholar 

  152. Bolenz, C. et al. Human epidermal growth factor receptor 2 expression status provides independent prognostic information in patients with urothelial carcinoma of the urinary bladder. BJU Int. 106, 1216–1222 (2010).

    Article  PubMed  Google Scholar 

  153. Krüger, S. et al. HER2 overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic implications. Int. J. Cancer 102, 514–518 (2002).

    Article  PubMed  Google Scholar 

  154. Kriegmair, M. C. et al. Prognostic value of molecular breast cancer subtypes based on Her2, ESR1, PGR and Ki67 mRNA-expression in muscle invasive bladder cancer. Transl. Oncol. 11, 467–476 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Helal, D. S., Darwish, S. A., Awad, R. A., Ali, D. A. & El-Guindy, D. M. Immunohistochemical based molecular subtypes of muscle-invasive bladder cancer: association with HER2 and EGFR alterations, neoadjuvant chemotherapy response and survival. Diagn. Pathol. 18, 11 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Miyamoto, H. et al. c-erbb-2 gene amplification as a prognostic marker in human bladder cancer. Urology 55, 679–683 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Gandour-Edwards, R. et al. Does HER2/neu expression provide prognostic information in patients with advanced urothelial carcinoma? Cancer 95, 1009–1015 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Sasaki, Y. et al. HER2 protein overexpression and gene amplification in upper urinary tract urothelial carcinoma-an analysis of 171 patients. Int. J. Clin. Exp. Pathol. 7, 699–708 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, Y.-W. et al. Potential significance of EMP3 in patients with upper urinary tract urothelial carcinoma: crosstalk with ErbB2-PI3K-Akt pathway. J. Urol. 192, 242–251 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Schneider, S. A. et al. Outcome of patients with micropapillary urothelial carcinoma following radical cystectomy: ERBB2 (HER2) amplification identifies patients with poor outcome. Mod. Pathol. 27, 758–764 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Gil-Jimenez, A. et al. Assessment of predictive genomic biomarkers for response to cisplatin-based neoadjuvant chemotherapy in bladder cancer. Eur. Urol. 83, 313–317 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Groenendijk, F. H. et al. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy. Eur. Urol. 69, 384–388 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Leite, K. R. M. et al. Histological variants of urothelial carcinoma predict no response to neoadjuvant chemotherapy. Clin. Genitourin. Cancer 20, e1–e6 (2022).

    Article  PubMed  Google Scholar 

  164. McHugh, L. A. et al. Lapatinib, a dual inhibitor of ErbB-1/-2 receptors, enhances effects of combination chemotherapy in bladder cancer cells. Int. J. Oncol. 34, 1155–1163 (2009).

    CAS  PubMed  Google Scholar 

  165. Tamura, S. et al. Molecular correlates of in vitro responses to dacomitinib and afatinib in bladder cancer. Bladder Cancer 4, 77–90 (2018).

    Article  PubMed  Google Scholar 

  166. Tsai, Y.-C. et al. Synergistic blockade of EGFR and HER2 by new-generation EGFR tyrosine kinase inhibitor enhances radiation effect in bladder cancer cells. Mol. Cancer Ther. 14, 810–820 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Grivas, P. D. et al. Evaluation of the antitumor activity of dacomitinib in models of human bladder cancer. Mol. Med. 19, 367–376 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kulukian, A. et al. Preclinical activity of HER2-selective tyrosine kinase inhibitor tucatinib as a single agent or in combination with trastuzumab or docetaxel in solid tumor models. Mol. Cancer Ther. 19, 976–987 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Dahl, D. M. et al. Long-term outcomes of chemoradiation for muscle-invasive bladder cancer in noncystectomy candidates. final results of NRG oncology RTOG 0524-A phase 1/2 trial of paclitaxel + trastuzumab with daily radiation or paclitaxel alone with daily irradiation. Eur. Urol. Oncol. 7, 83–90 (2024).

    Article  PubMed  Google Scholar 

  170. Salzberg, M. et al. Trastuzumab (Herceptin) in patients with HER-2-overexpressing metastatic or locally advanced transitional cell carcinoma of the bladder: report on 7 patients. Eur. J. Cancer 42, 2660–2661 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Parakh, S. et al. Evolution of anti-HER2 therapies for cancer treatment. Cancer Treat. Rev. 59, 1–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Hainsworth, J. D. et al. Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J. Clin. Oncol. 36, 536–542 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Ikeda, S. et al. Primary results from JUPITER, a phase 2 basket trial of combination therapy with trastuzumab and pertuzumab in patients with HER2-amplified solid tumors. J. Clin. Oncol. 40, 3131–3131 (2022).

    Article  Google Scholar 

  174. Galsky, M. D. et al. Primary analysis from DS8201-A-U105: a phase 1b, two-part, open-label study of trastuzumab deruxtecan (T-DXd) with nivolumab (nivo) in patients (pts) with HER2-expressing urothelial carcinoma (UC). J. Clin. Oncol. 40, 438–438 (2022).

    Article  Google Scholar 

  175. Hayashi, T. et al. Targeting HER2 with T-DM1, an antibody cytotoxic drug conjugate, is effective in HER2 over expressing bladder cancer. J. Urol. 194, 1120–1131 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Liu, D. et al. Final analysis of multi-histology basket trial expansion of ado-trastuzumab emtansine in patients with HER2 amplified cancers. J. Clin. Oncol. 41, 3025 (2023).

    Article  Google Scholar 

  177. Deeks, E. D. Disitamab vedotin: first approval. Drugs 81, 1929–1935 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Xu, Y. et al. Phase I study of the recombinant humanized anti-HER2 monoclonal antibody-MMAE conjugate RC48-ADC in patients with HER2-positive advanced solid tumors. Gastric Cancer 24, 913–925 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sheng, X. et al. Disitamab vedotin, a novel humanized anti-HER2 antibody-drug conjugate (ADC), combined with toripalimab in patients with locally advanced or metastatic urothelial carcinoma: an open-label phase 1b/2 study. J. Clin. Oncol. 41, 4566 (2023).

    Article  Google Scholar 

  180. Xu, H. et al. A phase II study of RC48-ADC in HER2-negative patients with locally advanced or metastatic urothelial carcinoma. J. Clin. Oncol. 40, 4519 (2022).

    Article  Google Scholar 

  181. Sheng, X. et al. Neoadjuvant treatment with disitamab vedotin plus perioperative toripalimab in patients with muscle-invasive bladder cancer (MIBC) with HER2 expression: updated efficacy and safety results from the phase II RC48-C017 trial. J. Clin. Oncol. 43, 665 (2025).

    Article  Google Scholar 

  182. Yan, X. et al. Efficacy and safety of DV in HER2-negative and HER2-low locally advanced or metastatic urothelial carcinoma: results of a phase 2 study. Med. 6, 100637 (2025).

    Article  CAS  PubMed  Google Scholar 

  183. Iwata, T. N. et al. A HER2-targeting antibody-drug conjugate, trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol. Cancer Ther. 17, 1494–1503 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Wysocki, P. J. et al. Efficacy and safety of trastuzumab deruxtecan (T-DXd) in patients (pts) with HER2-expressing solid tumors: results from the bladder cohort of the DESTINY-PanTumor02 (DP-02) study. J. Clin. Oncol. 42, 4565 (2024).

    Article  Google Scholar 

  185. Taniguchi, H. et al. Tissue-agnostic efficacy of trastuzumab deruxtecan (T-DXd) in advanced solid tumors with HER2 amplification identified by plasma cell-free DNA (cfDNA) testing: results from a phase 2 basket trial (HERALD/EPOC1806). J. Clin. Oncol. 41, 3014–3014 (2023).

    Article  Google Scholar 

  186. Banerji, U. et al. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 20, 1124–1135 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Qu, W. et al. A single-arm, multicenter, phase 2 clinical study of recombinant humanized anti-HER2 monoclonal antibody-MMAE conjugate (MRG002) in HER2-positive unresectable locally advanced or metastatic urothelial carcinoma. Eur. J. Cancer 205, 114096 (2024).

    Article  CAS  PubMed  Google Scholar 

  188. Rajjayabun, P. H., Keegan, P. E., Lunec, J. & Mellon, J. K. erbB receptor expression patterns in human bladder cancer. Urology 66, 196–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  189. Carlsson, J., Wester, K., De La Torre, M., Malmström, P.-U. & Gårdmark, T. EGFR-expression in primary urinary bladder cancer and corresponding metastases and the relation to HER2-expression. On the possibility to target these receptors with radionuclides. Radiol. Oncol. 49, 50–58 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ye, D. et al. 1959O BL-B01D1, an EGFR x HER3 bispecific antibody-drug conjugate (ADC), in patients with locally advanced or metastatic urothelial carcinoma (UC). Ann. Oncol. 35, S1133 (2024).

    Article  Google Scholar 

  191. Crupi, E. et al. Nectin-4 positivity in genitourinary malignancies: a systematic review. JCO Precis. Oncol. 8, e2400470 (2025).

    Google Scholar 

  192. Klümper, N. et al. NECTIN4 amplification is frequent in solid tumors and predicts enfortumab vedotin response in metastatic urothelial cancer. J. Clin. Oncol. 42, 2446–2455 (2024).

    Article  PubMed  Google Scholar 

  193. Eckstein, M. et al. Molecular subtypes, NECTIN4/HER2 expression, and clinical outcomes in patients (pts) with advanced urothelial carcinoma (aUC) or muscle invasive bladder cancer (MIBC): exploratory analyses from JAVELIN bladder 100 and the tempus database. J. Clin. Oncol. 43, 828 (2025).

    Article  Google Scholar 

  194. Gouda, M. A. et al. Human epidermal growth factor receptor 2 loss following treatment with trastuzumab deruxtecan in patients with metastatic breast cancer. Clin. Cancer Res. 31, 1268–1274 (2025).

    Article  CAS  PubMed  Google Scholar 

  195. Li, R. et al. FGFR inhibition in urothelial carcinoma. Eur. Urol. 87, 110–122 (2025).

    Article  CAS  PubMed  Google Scholar 

  196. Ascione, L. et al. Predicting response to antibody drug conjugates: a focus on antigens’ targetability. Oncologist 28, 944–960 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Hurst, C. D., Platt, F. M., Taylor, C. F. & Knowles, M. A. Novel tumor subgroups of urothelial carcinoma of the bladder defined by integrated genomic analysis. Clin. Cancer Res. 18, 5865–5877 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Leary, J. B. et al. Frequency and nature of genomic alterations in ERBB2-altered urothelial bladder cancer. Target. Oncol. 19, 447–458 (2024).

    Article  PubMed  Google Scholar 

  199. Simon, R. et al. HER-2 and TOP2A coamplification in urinary bladder cancer. Int. J. Cancer 107, 764–772 (2003).

    Article  CAS  PubMed  Google Scholar 

  200. Siravegna, G. et al. Radiologic and genomic evolution of individual metastases during HER2 blockade in colorectal cancer. Cancer Cell 34, 148–162.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  201. Yy, J. et al. Genetic predictors of response to systemic therapy in esophagogastric cancer. Cancer Discov. 8, 49–58 (2018).

    Article  Google Scholar 

  202. Shimozaki, K. et al. KRAS mutation as a predictor of insufficient trastuzumab efficacy and poor prognosis in HER2-positive advanced gastric cancer. J. Cancer Res. Clin. Oncol. 149, 1273–1283 (2023).

    Article  CAS  PubMed  Google Scholar 

  203. Patra, S., Young, V., Llewellyn, L., Senapati, J. N. & Mathew, J. BRAF, KRAS and PIK3CA mutation and sensitivity to trastuzumab in breast cancer cell line model. Asian Pac. J. Cancer Prev. 18, 2209–2213 (2017).

    PubMed  PubMed Central  Google Scholar 

  204. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  205. Meric-Bernstam, F. et al. MyPathway HER2 basket study: pertuzumab (P) + trastuzumab (H) treatment of a large, tissue-agnostic cohort of patients with HER2-positive advanced solid tumors. J. Clin. Oncol. 39, 3004 (2021).

    Article  Google Scholar 

  206. Sawada, K. et al. Prognostic and predictive value of HER2 amplification in patients with metastatic colorectal cancer. Clin. Colorectal Cancer 17, 198–205 (2018).

    PubMed  Google Scholar 

  207. Ughetto, S. et al. Personalized therapeutic strategies in HER2-driven gastric cancer. Gastric Cancer 24, 897–912 (2021).

    Article  CAS  PubMed  Google Scholar 

  208. Raghav, K. et al. Trastuzumab deruxtecan in patients with HER2-positive advanced colorectal cancer (DESTINY-CRC02): primary results from a multicentre, randomised, phase 2 trial. Lancet Oncol. 25, 1147–1162 (2024).

    Article  CAS  PubMed  Google Scholar 

  209. Beck, A., Goetsch, L., Dumontet, C. & Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article  CAS  PubMed  Google Scholar 

  210. Budczies, J. et al. Tumour mutational burden: clinical utility, challenges and emerging improvements. Nat. Rev. Clin. Oncol. 21, 725–742 (2024).

    Article  PubMed  Google Scholar 

  211. Kim, D., Kim, J. M., Kim, J.-S., Kim, S. & Kim, K.-H. Differential expression and clinicopathological significance of HER2, indoleamine 2,3-dioxygenase and PD-L1 in urothelial carcinoma of the bladder. J. Clin. Med. 9, 1265 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Burgess, E. F. et al. Low co-expression of PD-L1 and oncogenic receptor tyrosine kinases HER2 and cMET in urothelial carcinoma is associated with discordant expression between primary and metastatic sites. Urol. Oncol. 41, 357.e23–357.e29 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Parent, P. et al. Predictive biomarkers for immune checkpoint inhibitor response in urothelial cancer. Ther. Adv. Med. Oncol. 15, 17588359231192402 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Powles, T. et al. Enfortumab vedotin and pembrolizumab in untreated advanced urothelial cancer. N. Engl. J. Med. 390, 875–888 (2024).

    Article  CAS  PubMed  Google Scholar 

  215. Cancer Protocol Templates. College of American Pathologists https://www.cap.org/protocols-and-guidelines/cancer-reporting-tools/cancer-protocol-templates.

  216. van de Haar, J. et al. ESMO recommendations on clinical reporting of genomic test results for solid cancers. Ann. Oncol. 35, 954–967 (2024).

    Article  PubMed  Google Scholar 

  217. Zhu, X. et al. HER2 overexpression in urothelial carcinoma with GATA3 and PPARG copy number gains. Oncologist 29, e1094–e1097 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Chu, C. E. et al. Heterogeneity in NECTIN4 expression across molecular subtypes of urothelial cancer mediates sensitivity to enfortumab vedotin. Clin. Cancer Res. 27, 5123–5130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Gutierrez, M. et al. Interim phase I clinical data of FT538, an off-the-shelf, multiplexed-engineered, iPSC-derived NK cell therapy, combined with monoclonal antibodies in patients with advanced solid tumors. J. Immunotherapy. Cancer 10, (Suppl. 2) 727 (2022).

    Google Scholar 

  220. Bajorin, D. F. et al. Phase 2 trial results of DN24-02, a HER2-targeted autologous cellular immunotherapy in HER2+ urothelial cancer patients (pts). J. Clin. Oncol. 34, 4513 (2016).

    Article  Google Scholar 

  221. Breyer, J. et al. Predictive value of molecular subtyping in NMIBC by RT-qPCR of ERBB2, ESR1, PGR and MKI67 from formalin fixed TUR biopsies. Oncotarget 8, 67684–67695 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Shipp, C. A. et al. Association of HER2 expression in advanced urothelial carcinoma (aUC) and treatment outcomes with immune checkpoint inhibitors and enfortumab vedotin. J. Clin. Oncol. 42, 599 (2024).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.R., E.C., F.P. and M.D.G. researched data for the article. D.R., E.C., F.P. and M.D.G. contributed substantially to discussion of the content. D.R., E.C., F.P., P.H.O.’D., B.M.F., P.C.B., P.G., R.A.H. and M.D.G. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Daniele Raggi or Emanuele Crupi.

Ethics declarations

Competing interests

P.G. (in the past 2 years) — consulting with AbbVie, AstraZeneca, Astellas Pharma, Bicycle Therapeutics, Bristol-Myers Squibb, Daiichi Sankyo, Fresenius Kabi, Gilead, Janssen, Merck KGaA, MSD, Pfizer, Roche, Strata Oncology, Replimune, Foundation Medicine, Eli Lilly, Urogen; research funding to the institution: Acrivon Therapeutics, ALX Oncology, Bristol-Myers Squibb, Merck KGaA, MSD, Genentech, Gilead. O.A. received scientific advisory board fees from Seagen, Adaptimmune, Bicycle Therapeutics and Silverback Therapeutics, and research funding to the institution from AstraZeneca, Ikena Oncology, Genentech, and Arcus Biosciences. P.H.O.’D. — honoraria: Adept Field Solutions, Advarra, Merck, Astellas, AbbVie, Pfizer, Custom Learning Designs, Axiom Healthcare Strategies, EMD Serono, IntrinsiQ, ISMIE, ImmunityBio, NAMCP, Seagen, Curio Science, FirstWord, Gilead, MedLearning Group, Research to Practice, Great Debates and Updates, Loxo/Lilly, MJH Life Sciences, Peerview, Vaniam Group, Institute for Enquiring Minds, Pharmavision UK, PRIME Education LLC, Amerisource Bergen, Health Advances, Parexel Intl Corp, Vida Ventures LLC; research funding: Boehringer Ingelheim (Inst), Merck (Inst), Genentech/Roche (Inst), AstraZeneca/MedImmune (Inst), Acerta Pharma (Inst), Janssen (Inst), Seagen (Inst), Bristol-Myers Squibb (Inst), Astellas Pharma (Inst), Pfizer (Inst), Loxo/Lilly (Inst); expert testimony: Hart Wagner LLP, O’Brien and Ryan LLP; travel, accommodation, expenses: Curio Science, Astellas, SeaGen, Merck; other relationships: NIH (via Duke University), Janssen, Nektar, Dragonfly Therapeutics, G1 Therapeutics. R.A.H. — honoraria for advisory boards and speaking from MSD, Roche, Bristol-Myers Squibb, Necktar, Janssen, Merck, Astellas, BioNtech; research funding from MSD, Elekta, Roche, Cancer Research UK. A.N. — employment: Bayer (I); stock and other ownership interests: Bayer (I); consulting or advisory role: Merck Sharp & Dohme, AstraZeneca, Incyte, Seattle Genetics/Astellas, Bristol-Myers Squibb, Catalym, Gilead Sciences, Genenta Science, Johnson & Johnson/Janssen, PeerView, PeerVoice, Merck Serono, Samsung Bioepis, Bicycle Therapeutics; research funding: Merck Sharp & Dohme (Inst), Gilead Sciences (Inst), Bristol-Myers Squibb/Celgene (Inst); travel, accommodation, expenses: Merck Sharp & Dohme, AstraZeneca, Janssen, Gilead Sciences. D.R. and R.A.H. acknowledge that this study represents independent research supported by the National Institute for Health and Care Research (NIHR) Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care.

Peer review

Peer review information

Nature Reviews Urology thanks Veronika Bahlinger, Mathieu Larroquette and Claud Grigg for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raggi, D., Crupi, E., Pederzoli, F. et al. HER2 and urothelial carcinoma: current understanding and future directions. Nat Rev Urol (2025). https://doi.org/10.1038/s41585-025-01075-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-025-01075-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing