Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunological features of clear-cell renal-cell carcinoma and resistance to immune checkpoint inhibitors

Abstract

The advent of immunotherapy has yielded great improvements in survival outcomes of people with clear-cell renal-cell carcinoma (ccRCC). Currently, immune checkpoint inhibitors (ICIs) are the cornerstone of treatment regimens for metastatic ccRCC. Yet a substantial group of patients do not respond to ICIs and few achieve long-term remission, indicating the presence of intrinsic and acquired resistance. The mechanisms underlying ICI resistance in ccRCC remain poorly understood, potentially owing to its unique immunological landscape compared with other immunotherapy-responsive cancers. Specifically, ccRCC is characterized by one of the highest levels of T cell infiltration across different tumours; however, high T cell infiltration does not correlate consistently with improved ICI outcomes. Moreover, the tumour mutational burden in ccRCC is relatively low, compared with that of other immunotherapy-responsive cancers, and fails to predict ICI efficacy. The limited predictive value of these commonly used markers for ICI response underscores the need for deeper exploration of the immunological mechanisms driving the antitumour immune response in ccRCC. Investigating commonalities and disparities with other immunotherapy-responsive cancer types might improve understanding of ICI resistance in ccRCC and inform the development of strategies to enhance the clinical benefits of immunotherapy.

Key points

  • Although clear-cell renal-cell carcinoma (ccRCC) is sensitive to immune checkpoint inhibitors (ICIs), a substantial number of patients fail to respond to these therapies and long-term remissions are rare, indicating intrinsic and acquired resistance.

  • ccRCC has unique immunological characteristics, including low tumour mutational burden and one of the most abundant immune infiltrates across common solid tumours. However, unlike in other cancers, these features lack a strong association with ICI response.

  • Immunological factors potentially contributing to ICI resistance in ccRCC include high intratumoural heterogeneity, dysfunctional T cells within the immune cell infiltrate, B cell and tertiary lymphoid structure scarcity, and abundance of immunosuppressive myeloid cells.

  • Further investigation is required to understand the mechanisms underlying the limited ICI responses in ccRCC and to identify reliable biomarkers of response to therapy given that markers used in other cancers might not be applicable to ccRCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impact of tumour mutational burden and frameshift insertions and deletions burden on antitumour T cell response in clear-cell renal-cell carcinoma.
Fig. 2: Impact of intratumoural heterogeneity on the antitumour immune response.
Fig. 3: Immune cells in the ccRCC tumour microenvironment.
Fig. 4: Potential factors contributing to resistance against immune checkpoint inhibitors in clear-cell renal-cell carcinoma.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer 103, 356–387 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, J. et al. A global trend analysis of kidney cancer incidence and mortality and their associations with smoking, alcohol consumption, and metabolic syndrome. Eur. Urol. Focus. 8, 200–209 (2022).

    Article  PubMed  Google Scholar 

  3. Hsieh, J. J. et al. Renal cell carcinoma. Nat. Rev. Dis. Prim. 3, 17009 (2017).

    Article  PubMed  Google Scholar 

  4. Negrier, S. et al. Recombinant human interleukin-2, recombinant human interferon alfa-2a, or both in metastatic renal-cell carcinoma. Groupe Français d’Immunothérapie. N. Engl. J. Med. 338, 1272–1278 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Yang, J. C. et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J. Immunother. 30, 825–830 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Motzer, R. J. et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J. Clin. Oncol. 33, 1430–1437 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McDermott, D. F. et al. Open-label, single-arm phase II study of pembrolizumab monotherapy as first-line therapy in patients with advanced clear cell renal cell carcinoma. J. Clin. Oncol. 39, 1020–1028 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 749–757 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rini, B. I. et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 393, 2404–2415 (2019).

    Article  PubMed  Google Scholar 

  11. Powles, T. et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 21, 1563–1573 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Choueiri, T. K. et al. Updated efficacy results from the JAVELIN Renal 101 trial: first-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma. Ann. Oncol. 31, 1030–1039 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Motzer, R. et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N. Engl. J. Med. 384, 1289–1300 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Choueiri, T. K. et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 384, 829–841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Motzer, R. J. et al. Conditional survival and long-term efficacy with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma. Cancer 128, 2085–2097 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Ernst, M. S. et al. Outcomes for international metastatic renal cell carcinoma database consortium prognostic groups in contemporary first-line combination therapies for metastatic renal cell carcinoma. Eur. Urol. 84, 109–116 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Plimack, E. R. et al. Pembrolizumab plus axitinib versus sunitinib as first-line treatment of advanced renal cell carcinoma: 43-month follow-up of the phase 3 KEYNOTE-426 study. Eur. Urol. 84, 449–454 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Hamid, O. et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann. Oncol. 30, 582–588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Long, G. V. et al. Standard-dose pembrolizumab plus alternate-dose ipilimumab in advanced melanoma: KEYNOTE-029 cohort 1C, a phase 2 randomized study of two dosing schedules. Clin. Cancer Res. 27, 5280–5288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robert, C. et al. Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J. Clin. Oncol. 36, 1668–1674 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Schadendorf, D. et al. Efficacy and safety outcomes in patients with advanced melanoma who discontinued treatment with nivolumab and ipilimumab because of adverse events: a pooled analysis of randomized phase II and III trials. J. Clin. Oncol. 35, 3807–3814 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lenz, H. J. et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J. Clin. Oncol. 40, 161–170 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Maio, M. et al. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: updated analysis from the phase II KEYNOTE-158 study. Ann. Oncol. 33, 929–938 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Hellmann, M. D. et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 381, 2020–2031 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Sha, D. et al. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 10, 1808–1825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Naranbhai, V. et al. HLA-A*03 and response to immune checkpoint blockade in cancer: an epidemiological biomarker study. Lancet Oncol. 23, 172–184 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Chan, S. et al. The JAK-STAT signaling-related signature serves as a prognostic and predictive biomarker for renal cell carcinoma immunotherapy. Gene 927, 148719 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choudhury, N. J. et al. Low T-cell receptor diversity, high somatic mutation burden, and high neoantigen load as predictors of clinical outcome in muscle-invasive bladder cancer. Eur. Urol. Focus 2, 445–452 (2016).

    Article  PubMed  Google Scholar 

  36. Chae, Y. K. et al. Mutations in DNA repair genes are associated with increased neo-antigen load and activated T cell infiltration in lung adenocarcinoma. Oncotarget 9, 7949–7960 (2018).

    Article  PubMed  Google Scholar 

  37. Maby, P., Galon, J. & Latouche, J. B. Frameshift mutations, neoantigens and tumor-specific CD8+ T cells in microsatellite unstable colorectal cancers. Oncoimmunology 5, e1115943 (2016).

    Article  PubMed  Google Scholar 

  38. Marabelle, A. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353–1365 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 34 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Senbabaoglu, Y. et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 17, 231 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN renal 101 trial. Nat. Med. 26, 1733–1741 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Braun, D. A. et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat. Med. 26, 909–918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Au, L. et al. Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma. Cancer Cell 39, 1497–1518.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Motzer, R. J. et al. Biomarker analysis from CheckMate 214: nivolumab plus ipilimumab versus sunitinib in renal cell carcinoma. J. Immunother. Cancer 10, e004316 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Cancer Genome Atlas Research, N. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Article  Google Scholar 

  49. Kaelin, W. G. Jr The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer 8, 865–873 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Wada, J. et al. The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions. Anticancer. Res. 29, 881–888 (2009).

    CAS  PubMed  Google Scholar 

  52. Oyama, T. et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J. Immunol. 160, 1224–1232 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Khan, K. A. & Kerbel, R. S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat. Rev. Clin. Oncol. 15, 310–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Clambey, E. T. et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl Acad. Sci. USA 109, E2784–E2793 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Corzo, C. A. et al. HIF-1ɑ regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207, 2439–2453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hoefflin, R. et al. HIF-1ɑ and HIF-2ɑ differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. Nat. Commun. 11, 4111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ricketts, C. J. et al. The Cancer Genome Atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 23, 313–326 e315 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van der Mijn, J. C. et al. The genomic landscape of metastatic clear cell renal cell carcinoma after systemic therapy. Mol. Oncol. 16, 2384–2395 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yang, Q. et al. Comprehensive analyses of PBRM1 in multiple cancer types and its association with clinical response to immunotherapy and immune infiltrates. Ann. Transl. Med. 9, 465 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nargund, A. M. et al. The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma. Cell Rep. 18, 2893–2906 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nam, S. J., Lee, C., Park, J. H. & Moon, K. C. Decreased PBRM1 expression predicts unfavorable prognosis in patients with clear cell renal cell carcinoma. Urol. Oncol. 33, 340.e9–340.e16 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Pawlowski, R. et al. Loss of PBRM1 expression is associated with renal cell carcinoma progression. Int. J. Cancer 132, E11–E17 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, Z. et al. Prognostic and clinicopathological value of PBRM1 expression in renal cell carcinoma. Clin. Chim. Acta 486, 9–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. da Costa, W. H. et al. Polybromo-1 (PBRM1), a SWI/SNF complex subunit is a prognostic marker in clear cell renal cell carcinoma. BJU Int. 113, E157–E163 (2014).

    Article  PubMed  Google Scholar 

  66. Carlo, M. I. et al. Genomic alterations and outcomes with VEGF-targeted therapy in patients with clear cell renal cell carcinoma. Kidney Cancer 1, 49–56 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hsieh, J. J. et al. Genomic biomarkers of a randomized trial comparing first-line everolimus and sunitinib in patients with metastatic renal cell carcinoma. Eur. Urol. 71, 405–414 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Fay, A. P. et al. Whole-exome sequencing in two extreme phenotypes of response to VEGF-targeted therapies in patients with metastatic clear cell renal cell carcinoma. J. Natl Compr. Canc Netw. 14, 820–824 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, X. D. et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat. Commun. 11, 2135 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Deutsch, J. S. et al. Combinatorial biomarker for predicting outcomes to anti-PD-1 therapy in patients with metastatic clear cell renal cell carcinoma. Cell Rep. Med. 4, 100947 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hakimi, A. A. et al. A pan-cancer analysis of PBAF complex mutations and their association with immunotherapy response. Nat. Commun. 11, 4168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dai, J. et al. PBRM1 mutation as a predictive biomarker for immunotherapy in multiple cancers. Front. Genet. 13, 1066347 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, Y. et al. Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness. Cancer Cell 41, 139–163.e17 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Turajlic, S. et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173, 595–610.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morris, L. G. et al. Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget 7, 10051–10063 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173, 581–594.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ran, X. et al. Low intratumor heterogeneity correlates with increased response to PD-1 blockade in renal cell carcinoma. Ther. Adv. Med. Oncol. 12, 1758835920977117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Golkaram, M. et al. Spatiotemporal evolution of the clear cell renal cell carcinoma microenvironment links intra-tumoral heterogeneity to immune escape. Genome Med. 14, 143 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wolf, Y. et al. UVB-induced tumor heterogeneity diminishes immune response in melanoma. Cell 179, 219–235.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Miao, D. et al. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat. Genet. 50, 1271–1281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Westcott, P. M. K. et al. Mismatch repair deficiency is not sufficient to elicit tumor immunogenicity. Nat. Genet. 55, 1686–1695 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Bonaventura, P. et al. Identification of shared tumor epitopes from endogenous retroviruses inducing high-avidity cytotoxic T cells for cancer immunotherapy. Sci. Adv. 8, eabj3671 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Attermann, A. S., Bjerregaard, A. M., Saini, S. K., Gronbaek, K. & Hadrup, S. R. Human endogenous retroviruses and their implication for immunotherapeutics of cancer. Ann. Oncol. 29, 2183–2191 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Smith, C. C. et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Invest. 128, 4804–4820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Panda, A. et al. Endogenous retrovirus expression is associated with response to immune checkpoint blockade in clear cell renal cell carcinoma. JCI Insight 3, e121522 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ficial, M. et al. Expression of T-cell exhaustion molecules and human endogenous retroviruses as predictive biomarkers for response to nivolumab in metastatic clear cell renal cell carcinoma. Clin. Cancer Res. 27, 1371–1380 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Jiang, Q. et al. HIF regulates multiple translated endogenous retroviruses: implications for cancer immunotherapy. Cell 188, 1807–1827.e34 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhou, M. et al. PBRM1 inactivation promotes upregulation of human endogenous retroviruses in a HIF-dependent manner. Cancer Immunol. Res. 10, 285–290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ramapriyan, R. et al. Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol. Ther. 195, 162–171 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. van der Mijn, J. C., Panka, D. J., Geissler, A. K., Verheul, H. M. & Mier, J. W. Novel drugs that target the metabolic reprogramming in renal cell cancer. Cancer Metab. 4, 14 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lucarelli, G. et al. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget 6, 13371–13386 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhang, Y., Chen, M., Liu, M., Xu, Y. & Wu, G. Glycolysis-related genes serve as potential prognostic biomarkers in clear cell renal cell carcinoma. Oxid. Med. Cell Longev. 2021, 6699808 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Xu, W. et al. Hexokinase 3 dysfunction promotes tumorigenesis and immune escape by upregulating monocyte/macrophage infiltration into the clear cell renal cell carcinoma microenvironment. Int. J. Biol. Sci. 17, 2205–2222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Singer, K. et al. Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1 (GLUT-1) correlates with low CD8+ T-cell infiltration in the tumor. Int. J. Cancer 128, 2085–2095 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Hakimi, A. A. et al. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 29, 104–116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cheong, J. E. & Sun, L. Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy — challenges and opportunities. Trends Pharmacol. Sci. 39, 307–325 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Lucarelli, G. et al. Activation of the kynurenine pathway predicts poor outcome in patients with clear cell renal cell carcinoma. Urol. Oncol. 35, 461.e15–461.e27 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Li, H. et al. Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nat. Commun. 10, 4346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science 375, eabf9419 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Giraldo, N. A. et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin. Cancer Res. 21, 3031–3040 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Remark, R. et al. Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin. Cancer Res. 19, 4079–4091 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749 e718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Masuda, T. et al. Unique characteristics of tertiary lymphoid structures in kidney clear cell carcinoma: prognostic outcome and comparison with bladder cancer. J. Immunother. Cancer 10, e003883 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Dieu-Nosjean, M. C., Goc, J., Giraldo, N. A., Sautes-Fridman, C. & Fridman, W. H. Tertiary lymphoid structures in cancer and beyond. Trends Immunol. 35, 571–580 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Dieu-Nosjean, M. C. et al. Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol. Rev. 271, 260–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Colbeck, E. J., Ager, A., Gallimore, A. & Jones, G. W. Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease? Front. Immunol. 8, 1830 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Meylan, M. et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55, 527–541.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang, F. et al. Transcriptome profiling reveals B-lineage cells contribute to the poor prognosis and metastasis of clear cell renal cell carcinoma. Front. Oncol. 11, 731896 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sjoberg, E. et al. A minority-group of renal cell cancer patients with high infiltration of CD20+B-cells is associated with poor prognosis. Br. J. Cancer 119, 840–846 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Li, S. et al. Tumor-educated B cells promote renal cancer metastasis via inducing the IL-1β/HIF-2ɑ/Notch1 signals. Cell Death Dis. 11, 163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fridman, W. H. et al. Tertiary lymphoid structures and B cells: an intratumoral immunity cycle. Immunity 56, 2254–2269 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Xu, W. et al. Heterogeneity in tertiary lymphoid structures predicts distinct prognosis and immune microenvironment characterizations of clear cell renal cell carcinoma. J. Immunother. Cancer 11, e006667 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Xu, W. et al. Unveiling the impact of tertiary lymphoid structures on immunotherapeutic responses of clear cell renal cell carcinoma. MedComm 5, e461 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Goc, J. et al. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res. 74, 705–715 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Giraldo, N. A. et al. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin. Cancer Res. 23, 4416–4428 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Liu, J., Geng, X., Hou, J. & Wu, G. New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell Int. 21, 389 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Braun, D. A. et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell 39, 632–648.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dannenmann, S. R. et al. Tumor-associated macrophages subvert T-cell function and correlate with reduced survival in clear cell renal cell carcinoma. Oncoimmunology 2, e23562 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Komohara, Y. et al. Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma. Cancer Sci. 102, 1424–1431 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Chakiryan, N. H. et al. Geospatial characterization of immune cell distributions and dynamics across the microenvironment in clear cell renal cell carcinoma. J. Immunother. Cancer 11, e006195 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nunez, S. Y. et al. Tumor-associated macrophages impair NK cell IFN-γ production and contribute to tumor progression in clear cell renal cell carcinoma. Eur. J. Immunol. 54, e2350878 (2024).

    Article  PubMed  Google Scholar 

  132. Shen, H. et al. Prognostic value of tumor-associated macrophages in clear cell renal cell carcinoma: a systematic review and meta-analysis. Front. Oncol. 11, 657318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Davidsson, S. et al. Infiltration of M2 macrophages and regulatory T cells plays a role in recurrence of renal cell carcinoma. Eur. Urol. Open. Sci. 20, 62–71 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Krishna, C. et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 39, 662–677.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bi, K. et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 39, 649–661.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jensen, T. O. et al. Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer stage I/II melanoma. J. Clin. Oncol. 27, 3330–3337 (2009).

    Article  PubMed  Google Scholar 

  137. Lopez-Janeiro, A., Padilla-Ansala, C., de Andrea, C. E., Hardisson, D. & Melero, I. Prognostic value of macrophage polarization markers in epithelial neoplasms and melanoma. A systematic review and meta-analysis. Mod. Pathol. 33, 1458–1465 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789.e18 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Ostrand-Rosenberg, S. & Fenselau, C. Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J. Immunol. 200, 422–431 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Ko, J. S. et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148–2157 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Najjar, Y. G. et al. Myeloid-derived suppressor cell subset accumulation in renal cell carcinoma parenchyma is associated with intratumoral expression of IL1β, IL8, CXCL5, and Mip-1ɑ. Clin. Cancer Res. 23, 2346–2355 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Lin, L. et al. Accumulation of tumor infiltrating myeloid-derived suppressor cells associates with changes in the immune landscape of clear cell renal cell carcinoma. J. Clin. Oncol. https://doi.org/10.1200/JCO.2018.36.6_suppl.655 (2018).

  143. Alcantara, M. et al. 541 Investigating myeloid derived suppressor cells (MDSCs) and oligonucleotide based targeting of STAT3 in renal cell carcinoma. J. Immunother. Cancer 8, A329–A329 (2020).

    Google Scholar 

  144. Draghiciu, O., Nijman, H. W., Hoogeboom, B. N., Meijerhof, T. & Daemen, T. Sunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigen-specific immune responses and tumor eradication. Oncoimmunology 4, e989764 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hao, Z. et al. Landscape of myeloid-derived suppressor cell in tumor immunotherapy. Biomark. Res. 9, 77 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. McRitchie, B. R. & Akkaya, B. Exhaust the exhausters: targeting regulatory T cells in the tumor microenvironment. Front. Immunol. 13, 940052 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Siddiqui, S. A. et al. Tumor-infiltrating Foxp3CD4+CD25+ T cells predict poor survival in renal cell carcinoma. Clin. Cancer Res. 13, 2075–2081 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Liotta, F. et al. Frequency of regulatory T cells in peripheral blood and in tumour-infiltrating lymphocytes correlates with poor prognosis in renal cell carcinoma. BJU Int. 107, 1500–1506 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Zhu, G. et al. Profiles of tumor-infiltrating immune cells in renal cell carcinoma and their clinical implications. Oncol. Lett. 18, 5235–5242 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Kamada, T. et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl Acad. Sci. USA 116, 9999–10008 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tan, C. L. et al. PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. J. Exp. Med. 218, e20182232 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Kumagai, S. et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol. 21, 1346–1358 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Denize, T. et al. PD-1 expression on intratumoral regulatory T cells is associated with lack of benefit from anti-PD-1 therapy in metastatic clear-cell renal cell carcinoma patients. Clin. Cancer Res. 30, 803–813 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer 20, 218–232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Fridman, W. H., Zitvogel, L., Sautes-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Nakano, O. et al. Proliferative activity of intratumoral CD8+ T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res. 61, 5132–5136 (2001).

    CAS  PubMed  Google Scholar 

  157. Matsushita, H. et al. Neoantigen load, antigen presentation machinery, and immune signatures determine prognosis in clear cell renal cell carcinoma. Cancer Immunol. Res. 4, 463–471 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Clark, D. J. et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell 179, 964–983.e31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Qi, Y. et al. Tumor-infiltrating CD39+CD8+ T cells determine poor prognosis and immune evasion in clear cell renal cell carcinoma patients. Cancer Immunol. Immunother. 69, 1565–1576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wu, X. et al. CD8+ T cell-based molecular classification with heterogeneous immunogenomic landscapes and clinical significance of clear cell renal cell carcinoma. Front. Immunol. 12, 745945 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Li, F. et al. The association between CD8+ tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: a systematic review and meta-analysis. EClinicalMedicine 41, 101134 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Voss, M. H. et al. Correlation of degree of tumor immune infiltration and insertion-and-deletion (indel) burden with outcome on programmed death 1 (PD1) therapy in advanced renal cell cancer (RCC). J. Clin. Oncol. 36, 4518–4518 (2018).

    Article  Google Scholar 

  163. Vano, Y. et al. 909PD — NIVOREN GETUG-AFU 26 translational study: CD8 infiltration and PD-L1 expression are associated with outcome in patients (pts) with metastatic clear cell renal cell carcinoma (mccRCC) treated with nivolumab (N). Ann. Oncol. 30, 360–361 (2019).

    Article  Google Scholar 

  164. Ross-Macdonald, P. et al. Molecular correlates of response to nivolumab at baseline and on treatment in patients with RCC. J. Immunother. Cancer 9, e001506 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Carlisle, J. W. et al. Clinical outcome following checkpoint therapy in renal cell carcinoma is associated with a burst of activated CD8 T cells in blood. J. Immunother. Cancer 10, e004803 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kim, J. H. et al. Clinical implications of the tumor microenvironment using multiplexed immunohistochemistry in patients with advanced or metastatic renal cell carcinoma treated with nivolumab plus ipilimumab. Front. Oncol. 12, 969569 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Philip, M. & Schietinger, A. CD8+ T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 22, 209–223 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer. Cancer Cell 33, 547–562 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Doering, T. A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity 37, 1130–1144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kawashima, A. et al. Tumour grade significantly correlates with total dysfunction of tumour tissue-infiltrating lymphocytes in renal cell carcinoma. Sci. Rep. 10, 6220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Borcherding, N. et al. Mapping the immune environment in clear cell renal carcinoma by single-cell genomics. Commun. Biol. 4, 122 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Pignon, J. C. et al. irRECIST for the evaluation of candidate biomarkers of response to nivolumab in metastatic clear cell renal cell carcinoma: analysis of a phase II prospective clinical trial. Clin. Cancer Res. 25, 2174–2184 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Li, Y. et al. Tumor-infiltrating TNFRSF9+ CD8+ T cells define different subsets of clear cell renal cell carcinoma with prognosis and immunotherapeutic response. Oncoimmunology 9, 1838141 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Connolly, K. A. et al. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci. Immunol. 6, eabg7836 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Schenkel, J. M. et al. Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+ CD8+ T cells in tumor-draining lymph nodes. Immunity 54, 2338–2353.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Barry, S. T., Gabrilovich, D. I., Sansom, O. J., Campbell, A. D. & Morton, J. P. Therapeutic targeting of tumour myeloid cells. Nat. Rev. Cancer 23, 216–237 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. Tie, Y., Tang, F., Wei, Y. Q. & Wei, X. W. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J. Hematol. Oncol. 15, 61 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.H.B., J.C.K.M., T.T.P.S., I.J. and J.B.A.G.H. conceptualized and designed the structure of the manuscript. F.H.B. wrote the original draft of the manuscript, with guidance from J.C.K.M. F.H.B. created the draft figures and tables. J.C.K.M., T.T.P.S., I.J., A.B. and J.B.A.G.H. critically revised the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to John B. A. G. Haanen.

Ethics declarations

Competing interests

J.C.K.M. receives research funding from Bayer B.V. and received financial compensation for consultancy services for AstraZeneca, Merck/MSD and Ipsen. A.B. received an educational restricted grant from Pfizer for a neoadjuvant trial, holds membership on the steering committee of adjuvant trials from Roche and BMS and is on the advisory board for Ipsen. J.B.A.G.H. received compensation for advisory roles for Achilles Therapeutics, AZ, BioNTech, BMS, CureVac, Eisai, Gadeta, Imcyse, Immunocore, Instil Bio, Iovance Biotherapeutics, Ipsen, MSD, Merck Serono, Molecular Partners, Neogene Therapeutics, Novartis, Pfizer, Roche/Genentech, Sanofi, Scenic, Third Rock Ventures and T-knife, and has received grants (all paid to the Institute) from Amgen, Asher Bio, BioNTech, BMS, MSD, Novartis, Neogene Therapeutics and Sastra Cell Therapy. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Eric Jonasch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgers, F.H., van der Mijn, J.C.K., Seijkens, T.T.P. et al. Immunological features of clear-cell renal-cell carcinoma and resistance to immune checkpoint inhibitors. Nat Rev Nephrol 21, 687���701 (2025). https://doi.org/10.1038/s41581-025-00983-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-025-00983-w

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer