Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Linking tumour angiogenesis and tumour immunity

Abstract

Immune checkpoint blockade therapy has revolutionized the treatment of metastatic and solid tumours, achieving durable responses in a subset of patients. However, most patients do not respond to immune checkpoint blockade, underscoring the critical need to better understand the determinants of therapeutic efficacy. A key obstacle to effective antitumour immune responses is the abnormal structure and function of tumour-associated blood vessels, which impede immune cell infiltration and contribute to the development of an immunosuppressive tumour microenvironment. Current research highlights the inverse correlation between angiogenesis and immune activity within the tumour microenvironment. In this Review, we discuss tumour angiogenesis in the context of tumour immunity, examining how this affects tumour progression and immunotherapy outcomes. We examine the molecular mechanisms underlying the crosstalk between angiogenesis and tumour immunity and discuss emerging anti-angiogenic regulators that hold potential for combination therapies. By integrating insights from preclinical and clinical studies, we outline future research directions to address current challenges and optimize cancer treatment strategies through combined anti-angiogenic and immunotherapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation of immunosuppressive tumour microenvironment through the interaction of tumour vasculature and tumour immunity.
Fig. 2: Overview of tumour vasculature normalization.
Fig. 3: Mechanism of action in vessel normalization by anti-angiogenic therapy.
Fig. 4: Mechanism of action in vessel normalization with ICB therapies or LTβR agonists.

Similar content being viewed by others

References

  1. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    Article  PubMed  CAS  Google Scholar 

  2. Houlahan, K. E. & Curtis, C. A tumor “personality” test to guide therapeutic decision making. Cancer Cell 39, 747–749 (2021).

    Article  PubMed  CAS  Google Scholar 

  3. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 e814 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chen, H. et al. A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell 173, 386–399 e312 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pearson, J. D. et al. Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity. Cancer Cell 39, 1115–1134 e1112 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Peng, X. et al. Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers. Cell Rep. 23, 255–269 e254 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Subramanian, M., Kabir, A. U., Barisas, D., Krchma, K. & Choi, K. Conserved angio-immune subtypes of the tumor microenvironment predict response to immune checkpoint blockade therapy. Cell Rep. Med. 4, 100896 (2023). This article demonstrates how the interactions between angiogenesis and immunity can be leveraged to derive prognostic indicators for immunotherapy response.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bagaev, A. et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 39, 845–865.e7 (2021). This article unveils tumour microenvironment subtypes that can predict immunotherapy response.

    Article  PubMed  CAS  Google Scholar 

  9. Arneth, B. Tumor microenvironment. Medicina 56, 15 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Elhanani, O., Ben-Uri, R. & Keren, L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell 41, 404–420 (2023).

    Article  PubMed  CAS  Google Scholar 

  11. Siemann, D. W. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat. Rev. 37, 63–74 (2011).

    Article  PubMed  CAS  Google Scholar 

  12. De Palma, M., Biziato, D. & Petrova, T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17, 457–474 (2017).

    Article  PubMed  Google Scholar 

  13. Abou Khouzam, R. et al. Tumor hypoxia regulates immune escape/invasion: influence on angiogenesis and potential impact of hypoxic biomarkers on cancer therapies. Front. Immunol. 11, 613114 (2020).

    Article  PubMed  Google Scholar 

  14. Fischbeck, A. J. et al. Tumor lactic acidosis: protecting tumor by inhibiting cytotoxic activity through motility arrest and bioenergetic silencing. Front. Oncol. 10, 589434 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014). This article demonstrates a direct interaction between endothelial cells and transmigrating T cells that mediates tolerance within a tumour microenvironment.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ebeling, S., Kowalczyk, A., Perez-Vazquez, D. & Mattiola, I. Regulation of tumor angiogenesis by the crosstalk between innate immunity and endothelial cells. Front. Oncol. 13, 1171794 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Welsh, M. Perspectives on vascular regulation of mechanisms controlling selective immune cell function in the tumor immune response. Int. J. Mol. Sci. 23, 2313 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chung, A. S. & Ferrara, N. Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol. 27, 563–584 (2011).

    Article  PubMed  CAS  Google Scholar 

  19. Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8, 464–478 (2007).

    Article  PubMed  CAS  Google Scholar 

  20. Magar, A. G., Morya, V. K., Kwak, M. K., Oh, J. U. & Noh, K. C. A molecular perspective on HIF-1α and angiogenic stimulator networks and their role in solid tumors: an update. Int. J. Mol. Sci. 25, 3313 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Folkman, J. Tumor angiogenesis. Adv. Cancer Res. 19, 331–358 (1974).

    Article  PubMed  CAS  Google Scholar 

  22. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. Naumov, G. N., Akslen, L. A. & Folkman, J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5, 1779–1787 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. Gee, M. S. et al. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am. J. Pathol. 162, 183–193 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zetter, B. R. Angiogenesis and tumor metastasis. Annu. Rev. Med. 49, 407–424 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. Bielenberg, D. R. & Zetter, B. R. The contribution of angiogenesis to the process of metastasis. Cancer J. 21, 267–273 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  PubMed  CAS  Google Scholar 

  29. Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann. Surg. 175, 409–416 (1972). This article provided the first suggestion that restricting angiogenesis can be used as a therapeutic modality to target solid tumours.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Patan, S., Munn, L. L. & Jain, R. K. Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc. Res. 51, 260–272 (1996).

    Article  PubMed  CAS  Google Scholar 

  31. Krishna Priya, S. et al. Tumour angiogenesis—origin of blood vessels. Int. J. Cancer 139, 729–735 (2016).

    Article  PubMed  CAS  Google Scholar 

  32. Donnem, T. et al. Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Med. 2, 427–436 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Maniotis, A. J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol. 155, 739–752 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Luo, Q. et al. Vasculogenic mimicry in carcinogenesis and clinical applications. J. Hematol. Oncol. 13, 19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jain, R. K. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26, 605–622 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Al-Ostoot, F. H., Salah, S., Khamees, H. A. & Khanum, S. A. Tumor angiogenesis: current challenges and therapeutic opportunities. Cancer Treat. Res. Commun. 28, 100422 (2021).

    PubMed  Google Scholar 

  37. Kerbel, R. S. Tumor angiogenesis: past, present and the near future. Carcinogenesis 21, 505–515 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. Hida, K., Maishi, N., Torii, C. & Hida, Y. Tumor angiogenesis-characteristics of tumor endothelial cells. Int. J. Clin. Oncol. 21, 206–212 (2016).

    Article  PubMed  CAS  Google Scholar 

  39. Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2, 727–739 (2002).

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, F. et al. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc. Natl Acad. Sci. USA 106, 6152–6157 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Liu, S., Ren, J. & Ten Dijke, P. Targeting TGFβ signal transduction for cancer therapy. Signal. Transduct. Target. Ther. 6, 8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fiedler, U. et al. Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation. Nat. Med. 12, 235–239 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. Reiss, Y. et al. Switching of vascular phenotypes within a murine breast cancer model induced by angiopoietin-2. J. Pathol. 217, 571–580 (2009).

    Article  PubMed  CAS  Google Scholar 

  44. Lee, S. et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 130, 691–703 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Rini, B. I. Vascular endothelial growth factor-targeted therapy in renal cell carcinoma: current status and future directions. Clin. Cancer Res. 13, 1098–1106 (2007).

    Article  PubMed  CAS  Google Scholar 

  46. Kappers, M. H., van Esch, J. H., Sleijfer, S., Danser, A. H. & van den Meiracker, A. H. Cardiovascular and renal toxicity during angiogenesis inhibition: clinical and mechanistic aspects. J. Hypertens. 27, 2297–2309 (2009).

    Article  PubMed  CAS  Google Scholar 

  47. Jain, R. K., Duda, D. G., Clark, J. W. & Loeffler, J. S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat. Clin. Pract. Oncol. 3, 24–40 (2006).

    Article  PubMed  CAS  Google Scholar 

  48. Johnson, D. H. et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol. 22, 2184–2191 (2004).

    Article  PubMed  CAS  Google Scholar 

  49. Ferrara, N. & Adamis, A. P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov. 15, 385–403 (2016).

    Article  PubMed  CAS  Google Scholar 

  50. Neves, K. B., Montezano, A. C., Lang, N. N. & Touyz, R. M. Vascular toxicity associated with anti-angiogenic drugs. Clin. Sci. 134, 2503–2520 (2020).

    Article  CAS  Google Scholar 

  51. Agrawal, S., Ganguly, S., Hajian, P., Cao, J. N. & Agrawal, A. PDGF upregulates CLEC-2 to induce T regulatory cells. Oncotarget 6, 28621–28632 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Solinc, J. et al. The platelet-derived growth factor pathway in pulmonary arterial hypertension: still an interesting target? Life 12, 658 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Daynes, R. A., Dowell, T. & Araneo, B. A. Platelet-derived growth factor is a potent biologic response modifier of T cells. J. Exp. Med. 174, 1323–1333 (1991).

    Article  PubMed  CAS  Google Scholar 

  54. Barrow, A. D. et al. Natural killer cells control tumor growth by sensing a growth factor. Cell 172, 534–548 e519 (2018).

    Article  PubMed  CAS  Google Scholar 

  55. Mann, J. E. et al. Genome-wide open reading frame profiling identifies fibroblast growth factor signaling as a driver of PD-L1 expression in head and neck squamous cell carcinoma. Oral Oncol. 146, 106562 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Im, J. H. et al. FGF2 alters macrophage polarization, tumour immunity and growth and can be targeted during radiotherapy. Nat. Commun. 11, 4064 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hu, C. et al. Tumor-secreted FGF21 acts as an immune suppressor by rewiring cholesterol metabolism of CD8+ T cells. Cell Metab. 36, 630–647.e8 (2024).

    Article  PubMed  CAS  Google Scholar 

  58. Muller, W. A. Mechanisms of leukocyte transendothelial migration. Annu. Rev. Pathol. 6, 323–344 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Muller, W. A. Transendothelial migration: unifying principles from the endothelial perspective. Immunol. Rev. 273, 61–75 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Muller, W. A. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 24, 327–334 (2003).

    Article  PubMed  CAS  Google Scholar 

  61. Wittchen, E. S. Endothelial signaling in paracellular and transcellular leukocyte transmigration. Front. Biosci. 14, 2522–2545 (2009).

    Article  PubMed Central  CAS  Google Scholar 

  62. Melder, R. J. et al. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat. Med. 2, 992–997 (1996).

    Article  PubMed  CAS  Google Scholar 

  63. Hellwig, S. M. et al. Endothelial CD34 is suppressed in human malignancies: role of angiogenic factors. Cancer Lett. 120, 203–211 (1997).

    Article  PubMed  CAS  Google Scholar 

  64. Griffioen, A. W., Damen, C. A., Martinotti, S., Blijham, G. H. & Groenewegen, G. Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res. 56, 1111–1117 (1996).

    PubMed  CAS  Google Scholar 

  65. Piali, L., Fichtel, A., Terpe, H. J., Imhof, B. A. & Gisler, R. H. Endothelial vascular cell adhesion molecule 1 expression is suppressed by melanoma and carcinoma. J. Exp. Med. 181, 811–816 (1995).

    Article  PubMed  CAS  Google Scholar 

  66. Berger, R. et al. Expression of platelet-endothelial cell adhesion molecule-1 (PECAM-1) during melanoma-induced angiogenesis in vivo. J. Cutan. Pathol. 20, 399–406 (1993).

    Article  PubMed  CAS  Google Scholar 

  67. Dirkx, A. E. et al. Tumor angiogenesis modulates leukocyte–vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res. 63, 2322–2329 (2003).

    PubMed  CAS  Google Scholar 

  68. Karikoski, M. et al. Clever-1/Stabilin-1 regulates lymphocyte migration within lymphatics and leukocyte entrance to sites of inflammation. Eur. J. Immunol. 39, 3477–3487 (2009).

    Article  PubMed  CAS  Google Scholar 

  69. Yin, M. et al. ASK1-dependent endothelial cell activation is critical in ovarian cancer growth and metastasis. JCI Insight 2, e91828 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Matsubara, T. et al. TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis. Hepatology 57, 1416–1425 (2013).

    Article  PubMed  CAS  Google Scholar 

  71. Sharma, A. et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell 183, 377–394.e21 (2020).

    Article  PubMed  CAS  Google Scholar 

  72. Sultan, H. et al. Poly-IC enhances the effectiveness of cancer immunotherapy by promoting T cell tumor infiltration. J. Immunother. Cancer 8, e001224 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Griffioen, A. W., Damen, C. A., Blijham, G. H. & Groenewegen, G. Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 88, 667–673 (1996).

    Article  PubMed  CAS  Google Scholar 

  74. Bouzin, C., Brouet, A., De Vriese, J., Dewever, J. & Feron, O. Effects of vascular endothelial growth factor on the lymphocyte–endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J. Immunol. 178, 1505–1511 (2007).

    Article  PubMed  CAS  Google Scholar 

  75. Wu, N. Z., Klitzman, B., Dodge, R. & Dewhirst, M. W. Diminished leukocyte–endothelium interaction in tumor microvessels. Cancer Res. 52, 4265–4268 (1992).

    PubMed  CAS  Google Scholar 

  76. Bessa, X. et al. Leukocyte recruitment in colon cancer: role of cell adhesion molecules, nitric oxide, and transforming growth factor beta1. Gastroenterology 122, 1122–1132 (2002).

    Article  PubMed  CAS  Google Scholar 

  77. Schmidt, J. et al. Reduced basal and stimulated leukocyte adherence in tumor endothelium of experimental pancreatic cancer. Int. J. Pancreatol. 26, 173–179 (1999).

    Article  PubMed  CAS  Google Scholar 

  78. Tromp, S. C. et al. Tumor angiogenesis factors reduce leukocyte adhesion in vivo. Int. Immunol. 12, 671–676 (2000).

    Article  PubMed  CAS  Google Scholar 

  79. Fukumura, D. et al. Tumor necrosis factor α-induced leukocyte adhesion in normal and tumor vessels: effect of tumor type, transplantation site, and host strain. Cancer Res. 55, 4824–4829 (1995).

    PubMed  CAS  Google Scholar 

  80. Mazanet, M. M. & Hughes, C. C. B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J. Immunol. 169, 3581–3588 (2002).

    Article  PubMed  CAS  Google Scholar 

  81. Kraan, J. et al. Endothelial CD276 (B7-H3) expression is increased in human malignancies and distinguishes between normal and tumour-derived circulating endothelial cells. Br. J. Cancer 111, 149–156 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Rodig, N. et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur. J. Immunol. 33, 3117–3126 (2003). This study demonstrates the direct role endothelial cells have in tempering T cell responses to tumours.

    Article  PubMed  CAS  Google Scholar 

  83. Riesenberg, R. et al. Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma. Clin. Cancer Res. 13, 6993–7002 (2007).

    Article  PubMed  CAS  Google Scholar 

  84. Lanitis, E., Dangaj, D., Irving, M. & Coukos, G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann. Oncol. 28, xii18–xii32 (2017).

    Article  PubMed  CAS  Google Scholar 

  85. Georganaki, M. et al. Tumor endothelial cell up-regulation of IDO1 is an immunosuppressive feed-back mechanism that reduces the response to CD40-stimulating immunotherapy. Oncoimmunology 9, 1730538 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sata, M. & Walsh, K. TNFα regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. Nat. Med. 4, 415–420 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Secchiero, P. & Zauli, G. The puzzling role of TRAIL in endothelial cell biology. Arterioscler. Thromb. Vasc. Biol. 28, e4 (2008).

    Article  PubMed  CAS  Google Scholar 

  88. Pirtskhalaishvili, G. & Nelson, J. B. Endothelium-derived factors as paracrine mediators of prostate cancer progression. Prostate 44, 77–87 (2000).

    Article  PubMed  CAS  Google Scholar 

  89. Li, X. et al. IL-35 is a novel responsive anti-inflammatory cytokine-a new system of categorizing anti-inflammatory cytokines. PLoS ONE 7, e33628 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Hernandez, G. L. et al. Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J. Exp. Med. 193, 607–620 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Thompson, T. W. et al. Endothelial cells express NKG2D ligands and desensitize antitumor NK responses. eLife 6, e30881 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Corzo, C. A. et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207, 2439–2453 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Doedens, A. L. et al. Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression. Cancer Res. 70, 7465–7475 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Neumann, A. K. et al. Hypoxia inducible factor 1α regulates T cell receptor signal transduction. Proc. Natl Acad. Sci. USA 102, 17071–17076 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Chen, G., Wu, K., Li, H., Xia, D. & He, T. Role of hypoxia in the tumor microenvironment and targeted therapy. Front. Oncol. 12, 961637 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Pang, L. et al. Plasmacytoid dendritic cells recruited by HIF-1α/eADO/ADORA1 signaling induce immunosuppression in hepatocellular carcinoma. Cancer Lett. 522, 80–92 (2021).

    Article  PubMed  CAS  Google Scholar 

  97. Du, R. et al. HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206–220 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Montauti, E. et al. A deubiquitination module essential for Treg fitness in the tumor microenvironment. Sci. Adv. 8, eabo4116 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Huber, V. et al. Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin. Cancer Biol. 43, 74–89 (2017).

    Article  PubMed  CAS  Google Scholar 

  100. Calcinotto, A. et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 72, 2746–2756 (2012).

    Article  PubMed  CAS  Google Scholar 

  101. Cao, T. M., Takatani, T. & King, M. R. Effect of extracellular pH on selectin adhesion: theory and experiment. Biophys. J. 104, 292–299 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Hegde, S., Leader, A. M. & Merad, M. MDSC: markers, development, states, and unaddressed complexity. Immunity 54, 875–884 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Yan, M., Gu, Y., Sun, H. & Ge, Q. Neutrophil extracellular traps in tumor progression and immunotherapy. Front. Immunol. 14, 1135086 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Paluskievicz, C. M. et al. T regulatory cells and priming the suppressive tumor microenvironment. Front. Immunol. 10, 2453 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Michaud, D., Steward, C. R., Mirlekar, B. & Pylayeva-Gupta, Y. Regulatory B cells in cancer. Immunol. Rev. 299, 74–92 (2021).

    Article  PubMed  CAS  Google Scholar 

  108. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article  PubMed  CAS  Google Scholar 

  109. Bied, M., Ho, W. W., Ginhoux, F. & Bleriot, C. Roles of macrophages in tumor development: a spatiotemporal perspective. Cell Mol. Immunol. 20, 983–992 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Portale, F. & Di Mitri, D. NK cells in cancer: mechanisms of dysfunction and therapeutic potential. Int. J. Mol. Sci. 24, 9521 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Farhood, B., Najafi, M. & Mortezaee, K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J. Cell Physiol. 234, 8509–8521 (2019).

    Article  PubMed  CAS  Google Scholar 

  112. Fan, N., Lavu, S., Hanson, C. A. & Tefferi, A. Extramedullary hematopoiesis in the absence of myeloproliferative neoplasm: Mayo Clinic case series of 309 patients. Blood Cancer J. 8, 119 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Barisas, D. A. G. et al. Tumor-derived interleukin-1alpha and leukemia inhibitory factor promote extramedullary hematopoiesis. PLoS Biol. 21, e3001746 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Fainaru, O., Hantisteanu, S. & Hallak, M. Immature myeloid cells accumulate in mouse placenta and promote angiogenesis. Am. J. Obstet. Gynecol. 204, 544 e518–523 (2011).

    Article  Google Scholar 

  115. Hurt, B., Schulick, R., Edil, B., El Kasmi, K. C. & Barnett, C. Jr. Cancer-promoting mechanisms of tumor-associated neutrophils. Am. J. Surg. 214, 938–944 (2017).

    Article  PubMed  Google Scholar 

  116. Tian, L. et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544, 250–254 (2017). This article demonstrates the role of TH1 cells in mediating vessel normalization.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Fu, L. Q. et al. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol. 353, 104119 (2020).

    Article  PubMed  CAS  Google Scholar 

  118. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001). This article represents the first suggestion that normalization of tumour vessels by anti-angiogenic therapy can be used to augment concomitant therapies against solid tumours.

    Article  PubMed  CAS  Google Scholar 

  119. Martin, J. D., Seano, G. & Jain, R. K. Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu. Rev. Physiol. 81, 505–534 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Jain, R. K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Allen, E. et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9, eaak9679 (2017). This article demonstrates a crucial mechanism that drives the synergy between anti-angiogenics and immune checkpoint blockade.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Anderson, T. S., Wooster, A. L., Piersall, S. L., Okpalanwaka, I. F. & Lowe, D. B. Disrupting cancer angiogenesis and immune checkpoint networks for improved tumor immunity. Semin. Cancer Biol. 86, 981–996 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Schmittnaegel, M. et al. Dual angiopoietin-2 and VEGF-A inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med. 9, eaak9670 (2017).

    Article  PubMed  Google Scholar 

  124. Kabir, A. U. et al. Dual role of endothelial Myct1 in tumor angiogenesis and tumor immunity. Sci. Transl. Med. 13, eabb6731 (2021). This article demonstrates a novel transmembrane anti-angiogenic target that effectively confers synergy with immune checkpoint blockade.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Goveia, J. et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell 37, 421 (2020). This article reported the heterogeneity of lung tumour endothelial cell phenotypes by single-cell RNA sequencing.

    Article  PubMed  CAS  Google Scholar 

  126. Zhao, Q. et al. Single-cell transcriptome analyses reveal endothelial cell heterogeneity in tumors and changes following antiangiogenic treatment. Cancer Res. 78, 2370��2382 (2018).

    Article  PubMed  CAS  Google Scholar 

  127. Shigeta, K. et al. Dual programmed death receptor-1 and vascular endothelial growth factor receptor-2 blockade promotes vascular normalization and enhances antitumor immune responses in hepatocellular carcinoma. Hepatology 71, 1247–1261 (2020).

    Article  PubMed  CAS  Google Scholar 

  128. Pober, J. S. et al. Ia expression by vascular endothelium is inducible by activated T cells and by human gamma interferon. J. Exp. Med. 157, 1339–1353 (1983).

    Article  PubMed  CAS  Google Scholar 

  129. Lapierre, L. A., Fiers, W. & Pober, J. S. Three distinct classes of regulatory cytokines control endothelial cell MHC antigen expression. Interactions with immune gamma interferon differentiate the effects of tumor necrosis factor and lymphotoxin from those of leukocyte alpha and fibroblast beta interferons. J. Exp. Med. 167, 794–804 (1988).

    Article  PubMed  CAS  Google Scholar 

  130. Goes, N., Urmson, J., Hobart, M. & Halloran, P. F. The unique role of interferon-gamma in the regulation of MHC expression on arterial endothelium. Transplantation 62, 1889–1894 (1996).

    Article  PubMed  CAS  Google Scholar 

  131. Collins, T. et al. Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc. Natl Acad. Sci. USA 81, 4917–4921 (1984).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Seino, K. et al. CD86 (B70/B7-2) on endothelial cells co-stimulates allogeneic CD4+ T cells. Int. Immunol. 7, 1331–1337 (1995).

    Article  PubMed  CAS  Google Scholar 

  133. Jollow, K. C., Zimring, J. C., Sundstrom, J. B. & Ansari, A. A. CD40 ligation induced phenotypic and functional expression of CD80 by human cardiac microvascular endothelial cells. Transplantation 68, 430–439 (1999).

    Article  PubMed  CAS  Google Scholar 

  134. Prat, A., Biernacki, K., Becher, B. & Antel, J. P. B7 expression and antigen presentation by human brain endothelial cells: requirement for proinflammatory cytokines. J. Neuropathol. Exp. Neurol. 59, 129–136 (2000).

    Article  PubMed  CAS  Google Scholar 

  135. Omari, K. I. & Dorovini-Zis, K. Expression and function of the costimulatory molecules B7-1 (CD80) and B7-2 (CD86) in an in vitro model of the human blood–brain barrier. J. Neuroimmunol. 113, 129–141 (2001).

    Article  PubMed  CAS  Google Scholar 

  136. Vokali, E. et al. Lymphatic endothelial cells prime naive CD8+ T cells into memory cells under steady-state conditions. Nat. Commun. 11, 538 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Lopes Pinheiro, M. A. et al. Internalization and presentation of myelin antigens by the brain endothelium guides antigen-specific T cell migration. eLife 5, e13149 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Gkountidi, A. O. et al. MHC class II antigen presentation by lymphatic endothelial cells in tumors promotes intratumoral regulatory T cell-suppressive functions. Cancer Immunol. Res. 9, 748–764 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Garnier, L. et al. IFN-γ-dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis. Sci. Adv. 8, eabl5162 (2022). This article demonstrates an example of the under-appreciated role of endothelial cell-mediated antigen presentation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Leone, P. et al. Bone marrow endothelial cells sustain a tumor-specific CD8+ T cell subset with suppressive function in myeloma patients. Oncoimmunology 8, e1486949 (2019).

    Article  PubMed  Google Scholar 

  141. Pan, X. et al. Tumour vasculature at single-cell resolution. Nature 632, 429–436 (2024). This article provides a comprehensive single-cell resource for tumour endothelial cells.

    Article  PubMed  CAS  Google Scholar 

  142. Buckanovich, R. J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat. Med. 14, 28–36 (2008).

    Article  PubMed  CAS  Google Scholar 

  143. Johansson-Percival, A. et al. De novo induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors. Nat. Immunol. 18, 1207–1217 (2017).

    Article  PubMed  CAS  Google Scholar 

  144. He, B. et al. Vascular targeting of LIGHT normalizes blood vessels in primary brain cancer and induces intratumoural high endothelial venules. J. Pathol. 245, 209–221 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Kim, C. G. et al. VEGF-A drives TOX-dependent T cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers. Sci. Immunol. 4, eaay0555 (2019).

    Article  PubMed  CAS  Google Scholar 

  146. Griffioen, A. W. et al. Angiogenesis inhibitors overcome tumor induced endothelial cell anergy. Int. J. Cancer 80, 315–319 (1999).

    Article  PubMed  CAS  Google Scholar 

  147. Hellebrekers, D. M. et al. Epigenetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Res. 66, 10770–10777 (2006).

    Article  PubMed  CAS  Google Scholar 

  148. Flati, V. et al. Endothelial cell anergy is mediated by bFGF through the sustained activation of p38-MAPK and NF-κB inhibition. Int. J. Immunopathol. Pharmacol. 19, 761–773 (2006).

    Article  PubMed  CAS  Google Scholar 

  149. De Caterina, R. et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest. 96, 60–68 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kubes, P., Suzuki, M. & Granger, D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl Acad. Sci. USA 88, 4651–4655 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Tang, H. et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell 29, 285–296 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Griffon-Etienne, G., Boucher, Y., Brekken, C., Suit, H. D. & Jain, R. K. Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res. 59, 3776–3782 (1999).

    PubMed  CAS  Google Scholar 

  153. Batchelor, T. T. et al. Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc. Natl Acad. Sci. USA 110, 19059–19064 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Garcia-Foncillas, J. et al. Dynamic contrast-enhanced MRI versus 18F-misonidazol-PET/CT to predict pathologic response in Bevacizumab-based neoadjuvant therapy in breast cancer. J. Clin. Oncol. 30, 10512–10512 (2012).

    Article  Google Scholar 

  155. Tong, R. T. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 64, 3731–3736 (2004).

    Article  PubMed  CAS  Google Scholar 

  156. Sharma, P., Wagner, K., Wolchok, J. D. & Allison, J. P. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat. Rev. Cancer 11, 805–812 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    Article  PubMed  CAS  Google Scholar 

  158. Wu, F. T. H. et al. Pre- and post-operative anti-PD-L1 plus anti-angiogenic therapies in mouse breast or renal cancer models of micro- or macro-metastatic disease. Br. J. Cancer 120, 196–206 (2019).

    Article  PubMed  CAS  Google Scholar 

  159. Meder, L. et al. Combined VEGF and PD-L1 blockade displays synergistic treatment effects in an autochthonous mouse model of small cell lung cancer. Cancer Res. 78, 4270–4281 (2018).

    Article  PubMed  CAS  Google Scholar 

  160. Kabir, A. U. et al. ZBTB46 coordinates angiogenesis and immunity to control tumor outcome. Nat. Immunol. 25, 1546–1554 (2024). This paper demonstrates a dual role for ZBTB46 in regulating both myeloid lineage outcome and tumour angiogenesis, influencing tumour outcome.

    Article  PubMed  CAS  Google Scholar 

  161. Sun, Y. et al. Blockade of the CD93 pathway normalizes tumor vasculature to facilitate drug delivery and immunotherapy. Sci. Transl. Med. 13, eabc8922 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Chinnasamy, D. et al. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J. Clin. Invest. 120, 3953–3968 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Chinnasamy, D. et al. Simultaneous targeting of tumor antigens and the tumor vasculature using T lymphocyte transfer synergize to induce regression of established tumors in mice. Cancer Res. 73, 3371–3380 (2013). This article demonstrates synergy between targeting angiogenesis and utilizing alternative forms of immunotherapy beyond immune checkpoint blockade.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Santoro, S. P. et al. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression. Cancer Immunol. Res. 3, 68–84 (2015).

    Article  PubMed  CAS  Google Scholar 

  165. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018).

    Article  PubMed  CAS  Google Scholar 

  167. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    Article  PubMed  CAS  Google Scholar 

  168. Motzer, R. et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N. Engl. J. Med. 384, 1289–1300 (2021).

    Article  PubMed  CAS  Google Scholar 

  169. Choueiri, T. K. et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 384, 829–841 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Joseph, G. J., Johnson, D. B. & Johnson, R. W. Immune checkpoint inhibitors in bone metastasis: clinical challenges, toxicities, and mechanisms. J. Bone Oncol. 43, 100505 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Nishino, M. et al. Immune-related response assessment during PD-1 inhibitor therapy in advanced non-small-cell lung cancer patients. J. Immunother. Cancer 4, 84 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Tumeh, P. C. et al. Liver metastasis and treatment outcome with anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC. Cancer Immunol. Res. 5, 417–424 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Gubin, M. M. et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 175, 1014–1030.e19 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Freshour, S. L. et al. Endothelial cells are a key target of IFN-g during response to combined PD-1/CTLA-4 ICB treatment in a mouse model of bladder cancer. iScience 26, 107937 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Gungabeesoon, J. et al. A neutrophil response linked to tumor control in immunotherapy. Cell 186, 1448–1464.e20 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Ng, M. S. F. et al. Deterministic reprogramming of neutrophils within tumors. Science 383, eadf6493 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Liu, Z. L., Chen, H. H., Zheng, L. L., Sun, L. P. & Shi, L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal. Transduct. Target. Ther. 8, 198 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Ferrara, N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am. J. Physiol. Cell Physiol. 280, C1358–C1366 (2001).

    Article  PubMed  CAS  Google Scholar 

  179. Dobbin, S. J. H., Petrie, M. C., Myles, R. C., Touyz, R. M. & Lang, N. N. Cardiotoxic effects of angiogenesis inhibitors. Clin. Sci. 135, 71–100 (2021).

    Article  CAS  Google Scholar 

  180. Kivela, R. et al. Endothelial cells regulate physiological cardiomyocyte growth via VEGFR2-mediated paracrine signaling. Circulation 139, 2570–2584 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Li, X. et al. Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler. Thromb. Vasc. Biol. 28, 1614–1620 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Rasanen, M. et al. VEGF-B gene therapy inhibits doxorubicin-induced cardiotoxicity by endothelial protection. Proc. Natl Acad. Sci. USA 113, 13144–13149 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Li, Y. et al. VEGF-B inhibits apoptosis via VEGFR-1-mediated suppression of the expression of BH3-only protein genes in mice and rats. J. Clin. Invest. 118, 913–923 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  184. Albrecht, I. et al. Suppressive effects of vascular endothelial growth factor-B on tumor growth in a mouse model of pancreatic neuroendocrine tumorigenesis. PLoS ONE 5, e14109 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Zajkowska, M., Lubowicka, E., Malinowski, P., Szmitkowski, M. & Lawicki, S. Plasma levels of VEGF-A, VEGF B, and VEGFR-1 and applicability of these parameters as tumor markers in diagnosis of breast cancer. Acta Biochim. Pol. 65, 621–628 (2018).

    PubMed  CAS  Google Scholar 

  186. Sanmartin, E. et al. A gene signature combining the tissue expression of three angiogenic factors is a prognostic marker in early-stage non-small cell lung cancer. Ann. Surg. Oncol. 21, 612–620 (2014).

    Article  PubMed  Google Scholar 

  187. Yang, X. et al. VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a marker of poor prognosis for cancer patients. Proc. Natl Acad. Sci. USA 112, E2900–E2909 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  188. Lee, C. et al. VEGF-B prevents excessive angiogenesis by inhibiting FGF2/FGFR1 pathway. Signal. Transduct. Target. Ther. 8, 305 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Ricci, V., Ronzoni, M. & Fabozzi, T. Aflibercept a new target therapy in cancer treatment: a review. Crit. Rev. Oncol. Hematol. 96, 569–576 (2015).

    Article  PubMed  Google Scholar 

  190. Thomson, R. J., Moshirfar, M. & Ronquillo, Y. Tyrosine kinase inhibitors. In StatPearls (StatPearls Publishing, 2024).

  191. Shyam Sunder, S., Sharma, U. C. & Pokharel, S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal. Transduct. Target. Ther. 8, 262 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Masiero, M. et al. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell 24, 229–241 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Mastrella, G. et al. Targeting APLN/APLNR improves antiangiogenic efficiency and blunts proinvasive side effects of VEGFA/VEGFR2 blockade in glioblastoma. Cancer Res. 79, 2298–2313 (2019).

    Article  PubMed  CAS  Google Scholar 

  194. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592–603 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Qin, Y. & Xu, G. Enhancing CAR T-cell therapies against solid tumors: mechanisms and reversion of resistance. Front. Immunol. 13, 1053120 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Zhang, Y. & Brekken, R. A. Direct and indirect regulation of the tumor immune microenvironment by VEGF. J. Leukoc. Biol. 111, 1269–1286 (2022).

    Article  PubMed  CAS  Google Scholar 

  199. Dong, X. et al. Anti-VEGF therapy improves EGFR-vIII-CAR-T cell delivery and efficacy in syngeneic glioblastoma models in mice. J. Immunother. Cancer 11, e005583 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Lanitis, E. et al. VEGFR-2 redirected CAR-T cells are functionally impaired by soluble VEGF-A competition for receptor binding. J. Immunother. Cancer 9, e002151 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Bocca, P. et al. Bevacizumab-mediated tumor vasculature remodelling improves tumor infiltration and antitumor efficacy of GD2-CAR T cells in a human neuroblastoma preclinical model. Oncoimmunology 7, e1378843 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Blanchard, L. & Girard, J. P. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 24, 719–753 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Myers, G. Immune-related adverse events of immune checkpoint inhibitors: a brief review. Curr. Oncol. 25, 342–347 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Postow, M. A. & Hellmann, M. D. Adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 1165 (2018).

    Article  PubMed  Google Scholar 

  205. Ribatti, D. Endogenous inhibitors of angiogenesis: a historical review. Leuk. Res. 33, 638–644 (2009).

    Article  PubMed  CAS  Google Scholar 

  206. Quintero-Fabián, S. et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Onocol. 9, 1370 (2019).

    Article  Google Scholar 

  207. Lawler, P. R. & Lawler, J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb. Perspect. Med. 2, a006627 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Saharinen, P., Eklund, L. & Alitalo, K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat. Rev. Drug Discov. 16, 635–661 (2017).

    Article  PubMed  CAS  Google Scholar 

  209. Nejabati, H. R. et al. Placental growth factor (PlGF) as an angiogenic/inflammatory switcher: lesson from early pregnancy losses. Gynecol. Endocrinol. 33, 668–674 (2017).

    Article  PubMed  CAS  Google Scholar 

  210. Liu, G. et al. Inhibition of FGF-FGFR and VEGF-VEGFR signalling in cancer treatment. Cell Prolif. 54, e13009 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Larsen, A. K., Ouaret, D., El Ouadrani, K. & Petitprez, A. Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol. Ther. 131, 80–90 (2011).

    Article  PubMed  CAS  Google Scholar 

  212. Shibuya, M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2, 1097–1105 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Raica, M. & Cimpean, A. M. Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals 3, 572–599 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Lin, S. et al. IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway. Cell Prolif. 50, e12390 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Wang, H. et al. The function of the HGF/c-Met axis in hepatocellular carcinoma. Front. Cell Dev. Biol. 8, 55 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Akil, A. et al. Notch signaling in vascular endothelial cells, angiogenesis, and tumor progression: an update and prospective. Front. Cell Dev. Biol. 9, 642352 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Guo, X., Yang, Y., Tang, J. & Xiang, J. Ephs in cancer progression: complexity and context-dependent nature in signaling, angiogenesis and immunity. Cell Commun. Signal. 22, 299 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Xu, Y. et al. Endothelial PFKFB3 plays a critical role in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 34, 1231–1239 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Nikitenko, L. L., Fox, S. B., Kehoe, S., Rees, M. C. & Bicknell, R. Adrenomedullin and tumour angiogenesis. Br. J. Cancer 94, 1–7 (2006).

    Article  PubMed  CAS  Google Scholar 

  220. Deng, Z. et al. TGF-β signaling in health, disease, and therapeutics. Signal Transduct. Target. Ther. 9, 61 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Fajardo, L. F., Kwan, H. H., Kowalski, J., Prionas, S. D. & Allison, A. C. Dual role of tumor necrosis factor-alpha in angiogenesis. Am. J. Pathol. 140, 539–544 (1992).

    PubMed  PubMed Central  CAS  Google Scholar 

  222. Indraccolo, S. Interferon-alpha as angiogenesis inhibitor: learning from tumor models. Autoimmunity 43, 244–247 (2010).

    Article  PubMed  CAS  Google Scholar 

  223. Xiao, H.-B. Interferon-β efficiently inhibited endothelial progenitor cell-induced tumor angiogenesis. Gene Ther. 19, 1030–1034 (2012).

    Article  PubMed  CAS  Google Scholar 

  224. Takano, S., Ishikawa, E., Matsuda, M., Yamamoto, T. & Matsumura, A. Interferon-β inhibits glioma angiogenesis through downregulation of vascular endothelial growth factor and upregulation of interferon inducible protein 10. Int. J. Oncol. 45, 1837–1846 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Hayakawa, Y. et al. IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide. Blood 100, 1728–1733 (2002).

    PubMed  CAS  Google Scholar 

  226. Ribatti, D. Interleukins as modulators of angiogenesis and anti-angiogenesis in tumors. Cytokine 118, 3–7 (2019).

    Article  PubMed  CAS  Google Scholar 

  227. Monnier, J. & Samson, M. Prokineticins in angiogenesis and cancer. Cancer Lett. 296, 144–149 (2010).

    Article  PubMed  CAS  Google Scholar 

  228. Frisch, A. et al. Apelin controls angiogenesis-dependent glioblastoma growth. Int. J. Mol. Sci. 21, 4179 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Liu, Q. et al. Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat. Commun. 6, 6020 (2015).

    Article  PubMed  CAS  Google Scholar 

  230. Zimna, A. & Kurpisz, M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed. Res. Int. 2015, 549412 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Avraamides, C. J., Garmy-Susini, B. & Varner, J. A. Integrins in angiogenesis and lymphangiogenesis. Nat. Rev. Cancer 8, 604–617 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Tong, M., Jun, T., Nie, Y., Hao, J. & Fan, D. The role of the Slit/Robo signaling pathway. J. Cancer 10, 2694–2705 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Wang, B. et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4, 19–29 (2003).

    Article  PubMed  Google Scholar 

  234. Lampropoulou, A. & Ruhrberg, C. Neuropilin regulation of angiogenesis. Biochem. Soc. Trans. 42, 1623–1628 (2014).

    Article  PubMed  CAS  Google Scholar 

  235. Pezzella, F. et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am. J. Pathol. 151, 1417–1423 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  236. Lazaris, A. et al. Vascularization of colorectal carcinoma liver metastasis: insight into stratification of patients for anti-angiogenic therapies. J. Pathol. Clin. Res. 4, 184–192 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Kuczynski, E. A., Vermeulen, P. B., Pezzella, F., Kerbel, R. S. & Reynolds, A. R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol. 16, 469–493 (2019).

    Article  PubMed  CAS  Google Scholar 

  238. Nielsen, K., Rolff, H. C., Eefsen, R. L. & Vainer, B. The morphological growth patterns of colorectal liver metastases are prognostic for overall survival. Mod. Pathol. 27, 1641–1648 (2014).

    Article  PubMed  CAS  Google Scholar 

  239. Brunner, S. M. et al. Prognosis according to histochemical analysis of liver metastases removed at liver resection. Br. J. Surg. 101, 1681–1691 (2014).

    Article  PubMed  CAS  Google Scholar 

  240. Teuwen, L. A. et al. Tumor vessel co-option probed by single-cell analysis. Cell Rep. 35, 109253 (2021).

    Article  PubMed  CAS  Google Scholar 

  241. Kuo, H. Y., Khan, K. A. & Kerbel, R. S. Antiangiogenic-immune-checkpoint inhibitor combinations: lessons from phase III clinical trials. Nat. Rev. Clin. Oncol. 21, 468–482 (2024).

    Article  PubMed  CAS  Google Scholar 

  242. Folberg, R. & Maniotis, A. J. Vasculogenic mimicry. APMIS 112, 508–525 (2004).

    Article  PubMed  Google Scholar 

  243. Ayala-Dominguez, L. et al. Mechanisms of vasculogenic mimicry in ovarian cancer. Front. Oncol. 9, 998 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research support is provided by the NIH HL55337 and CA271714. We apologize to colleagues whose work could not be cited due to space limitations. Artificial intelligence was used to tidy up the language and correct grammatical errors before submission of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Kyunghee Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks T. Byzova, X. Zhang and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

High endothelial venules

(HEVS). A specialized post-capillary venule that occurs in secondary lymphoid organs, except the spleen, and in other non-lymphoid tissues under certain chronic inflammatory conditions. HEVs allow a high level of extravasation of lymphocytes from blood as a consequence of the constitutive expression of adhesion molecules and chemokines at their luminal surface.

‘M2-like’ macrophage phenotype

‘M1’ and ‘M2’ are classifications historically used to define macrophages activated in vitro as pro-inflammatory (when ‘classically’ activated with interferon-γ and lipopolysaccharide) or anti-inflammatory (when ‘alternatively’ activated with IL-4 or IL-10). However, in vivo macrophages are highly specialized and extremely heterogeneous with regards to their phenotypes and functions, which are continuously shaped by their tissue microenvironment. The M1/M2 classification is too simplistic to explain their true nature, but these terms are still often used to indicate whether the macrophages in question are more pro-inflammatory or anti-inflammatory.

Micrometastases

Small clusters of cancer cells that have spread from the primary tumour to distant organs or lymph nodes but are too small to be detected by standard imaging techniques. These microscopic cancer cells can remain dormant for years before potentially growing into larger, detectable metastatic tumours.

Tertiary lymphoid structures

(TLSs). Ectopic lymphoid aggregates that are generated in non-lymphoid organs during the process of chronic immune stimulation and that exhibit the structural characteristics of secondary lymphoid organs. TLSs are composed of T cells, B cells and dendritic cells in a specified structural pattern, and often include high endothelial venules.

Vascular normalization window

A temporary period during anti-angiogenic therapy when abnormal, leaky tumour blood vessels are partially restored to a more normal structure and function. This creates an optimal time frame for enhanced drug delivery and immune cell infiltration, improving the effectiveness of cancer treatments.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, A.U., Subramanian, M., Kwon, Y. et al. Linking tumour angiogenesis and tumour immunity. Nat Rev Immunol (2025). https://doi.org/10.1038/s41577-025-01211-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-025-01211-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer