Abstract
The Epstein–Barr virus (EBV) is epidemiologically associated with development of autoimmune diseases, including systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. Although there is well-established evidence for this association, the underlying mechanistic basis remains incompletely defined. In this Review, we discuss the role of EBV infection as a potentiator of autoimmune rheumatic diseases. We review the EBV life cycle, viral transcription programmes, serological profiles and lytic reactivation. We discuss the epidemiological and mechanistic associations of EBV with systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. We describe the potential mechanisms by which EBV might promote autoimmunity, including EBV nuclear antigen 1-mediated molecular mimicry of human autoantigens; EBV-mediated B cell reprogramming, including EBV nuclear antigen 2-mediated dysregulation of autoimmune susceptibility genes; EBV and host genetic factors, including the potential for autoimmunity-promoting strains of EBV; EBV immune evasion and insufficient host responses to control infection; lytic reactivation; and other mechanisms. Finally, we discuss the therapeutic implications and potential therapeutic approaches to targeting EBV for the treatment of autoimmune disease.
Key points
-
Epstein–Barr virus (EBV) infection is epidemiologically associated with the autoimmune rheumatic diseases systemic lupus erythematosus, Sjögren syndrome and rheumatoid arthritis, as well as other autoimmune diseases, including multiple sclerosis.
-
There are multiple non-exclusive mechanisms by which EBV might potentiate autoimmunity, including molecular mimicry; B cell reprogramming; genetic factors, including autoimmunity-promoting strains of EBV and host genetics; immune evasion; and lytic reactivation.
-
Ongoing studies are linking EBV infection and EBV reactivation with development of autoimmunity and disease activity.
-
Ongoing studies are defining the molecular and cellular mechanisms by which EBV might mediate autoimmune diseases.
-
Therapeutic targeting of EBV could provide a fundamental treatment approach for EBV-associated autoimmune diseases.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Lossius, A., Johansen, J. N., Torkildsen, Ø., Vartdal, F. & Holmøy, T. Epstein-Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis — association and causation. Viruses 4, 3701–3730 (2012).
Kitagawa, H., Iho, S., Yokochi, T. & Hoshino, T. Detection of antibodies to the Epstein-Barr virus nuclear antigens in the sera from patients with systemic lupus erythematosus. Immunol. Lett. 17, 249–252 (1988).
Jog, N. R. & James, J. A. Epstein Barr virus and autoimmune responses in systemic lupus erythematosus. Front. Immunol. 11, 623944 (2020).
James, J. A. et al. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J. Clin. Invest. 100, 3019–3026 (1997).
James, J. A. et al. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum. 44, 1122–1126 (2001).
Li, Z. X., Zeng, S., Wu, H. X. & Zhou, Y. The risk of systemic lupus erythematosus associated with Epstein-Barr virus infection: a systematic review and meta-analysis. Clin. Exp. Med. 19, 23–36 (2019).
Liu, Z. & Chu, A. Sjögren’s syndrome and viral infections. Rheumatol. Ther. 8, 1051–1059 (2021).
Toda, I., Ono, M., Fujishima, H. & Tsubota, K. Sjögren’s syndrome (SS) and Epstein-Barr virus (EBV) reactivation. Ocul. Immunol. Inflamm. 2, 101–109 (1994).
Whittingham, S., McNeilage, L. J. & Mackay, I. R. Epstein-Barr virus as an etiological agent in primary Sjogren’s syndrome. Med. Hypotheses 22, 373–386 (1987).
Toussirot, E. & Roudier, J. Pathophysiological links between rheumatoid arthritis and the Epstein-Barr virus: an update. Jt. Bone Spine 74, 418–426 (2007).
Balandraud, N. et al. Epstein-Barr virus load in the peripheral blood of patients with rheumatoid arthritis: accurate quantification using real-time polymerase chain reaction. Arthritis Rheum. 48, 1223–1228 (2003).
Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022).
Moon, U. Y. et al. Patients with systemic lupus erythematosus have abnormally elevated Epstein-Barr virus load in blood. Arthritis Res. Ther. 6, R295–302 (2004).
Kang, I. et al. Defective control of latent Epstein-Barr virus infection in systemic lupus erythematosus. J. Immunol. 172, 1287–1294 (2004).
Sorgato, C. C. et al. EBV and CMV viral load in rheumatoid arthritis and their role in associated Sjögren’s syndrome. J. Oral. Pathol. Med. 49, 693–700 (2020).
Harley, J. B., Harley, I. T., Guthridge, J. M. & James, J. A. The curiously suspicious: a role for Epstein-Barr virus in lupus. Lupus 15, 768–777 (2006).
James, J. A., Harley, J. B. & Scofield, R. H. Epstein-Barr virus and systemic lupus erythematosus. Curr. Opin. Rheumatol. 18, 462–467 (2006).
Chen, C. J. et al. High prevalence of immunoglobulin A antibody against Epstein-Barr virus capsid antigen in adult patients with lupus with disease flare: case control studies. J. Rheumatol. 32, 44–47 (2005).
Fechtner, S. et al. Antibody responses to Epstein-Barr virus in the preclinical period of rheumatoid arthritis suggest the presence of increased viral reactivation cycles. Arthritis Rheumatol. 74, 597–603 (2022).
Jog, N. R. et al. Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Ann. Rheum. Dis. 78, 1235–1241 (2019).
Harley, J. B. et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat. Genet. 50, 699–707 (2018).
Hong, T. et al. Epstein-Barr virus nuclear antigen 2 extensively rewires the human chromatin landscape at autoimmune risk loci. Genome Res. 31, 2185–2198 (2021).
Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).
Thomas, O. G. et al. Cross-reactive EBNA1 immunity targets alpha-crystallin B and is associated with multiple sclerosis. Sci. Adv. 9, eadg3032 (2023).
Pender, M. P., Csurhes, P. A., Lenarczyk, A., Pfluger, C. M. & Burrows, S. R. Decreased T cell reactivity to Epstein-Barr virus infected lymphoblastoid cell lines in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 80, 498–505 (2009).
Berner, B. R. et al. Phenotypic and functional analysis of EBV-specific memory CD8 cells in SLE. Cell Immunol. 235, 29–38 (2005).
Larsen, M. et al. Exhausted cytotoxic control of Epstein-Barr virus in human lupus. PLoS Pathog. 7, e1002328 (2011).
Pender, M. P., Csurhes, P. A., Pfluger, C. M. & Burrows, S. R. CD8 T cell deficiency impairs control of Epstein–Barr virus and worsens with age in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 83, 353–354 (2012).
Pender, M. P., Csurhes, P. A., Burrows, J. M. & Burrows, S. R. Defective T-cell control of Epstein-Barr virus infection in multiple sclerosis. Clin. Transl. Immunol. 6, e126 (2017).
Willis, S. N. et al. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 132, 3318–3328 (2009).
Simpson, S. Jr. et al. EBV & HHV6 reactivation is infrequent and not associated with MS clinical course. Acta Neurol. Scand. 130, 328–337 (2014).
Münz, C. in Current Topics in Microbiology and Immunology (Springer, 2015).
Soldan, S. S. & Lieberman, P. M. Epstein-Barr virus and multiple sclerosis. Nat. Rev. Microbiol. 21, 51–64 (2023).
Stanfield, B. A. & Luftig, M. A. Recent advances in understanding Epstein-Barr virus. F1000Res 6, 386 (2017).
Moquin, S. A. et al. The Epstein-Barr virus episome maneuvers between nuclear chromatin compartments during reactivation. J. Virol. 92, e01413–e01417 (2018).
Iwakiri, D. Multifunctional non-coding Epstein-Barr virus encoded RNAs (EBERs) contribute to viral pathogenesis. Virus Res. 212, 30–38 (2016).
Thorley-Lawson, D. A. & Gross, A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N. Engl. J. Med. 350, 1328–1337 (2004).
Chan, K. C. et al. Investigation into the origin and tumoral mass correlation of plasma Epstein-Barr virus DNA in nasopharyngeal carcinoma. Clin. Chem. 51, 2192–2195 (2005).
Kondo, S. et al. EBV genome variations enhance clinicopathological features of nasopharyngeal carcinoma in a non-endemic region. Cancer Sci. 113, 2446–2456 (2022).
Song, L. et al. Identification of anti-Epstein-Barr virus (EBV) antibody signature in EBV-associated gastric carcinoma. Gastric Cancer 24, 858–867 (2021).
Levin, L. I. et al. Atypical prediagnosis Epstein-Barr virus serology restricted to EBV-positive Hodgkin lymphoma. Blood 120, 3750–3755 (2012).
De Leo, A. et al. Inhibition of autophagy in EBV-positive Burkitt’s lymphoma cells enhances EBV lytic genes expression and replication. Cell Death Dis. 6, e1876 (2015).
Morishima, S. et al. Increased T-cell responses to Epstein-Barr virus with high viral load in patients with Epstein-Barr virus-positive diffuse large B-cell lymphoma. Leuk. Lymphoma 56, 1072–1078 (2015).
Cohen, M. et al. Epstein-Barr virus lytic cycle involvement in diffuse large B cell lymphoma. Hematol. Oncol. 36, 98–103 (2018).
Huang, Y. et al. Serum EBV EA-IgA and VCA-IgA antibodies can be used for risk group stratification and prognostic prediction in extranodal NK/T cell lymphoma: 24-year experience at a single institution. Ann. Hematol. 96, 1331–1342 (2017).
Liu, Z. et al. Characterization of the humoral immune response to the EBV proteome in extranodal NK/T-cell lymphoma. Sci. Rep. 11, 23664 (2021).
Peric, Z. et al. Features of Epstein-Barr Virus (EBV) reactivation after reduced intensity conditioning allogeneic hematopoietic stem cell transplantation. Leukemia 25, 932–938 (2011).
San-Juan, R. et al. Epstein-Barr virus-related post-transplant lymphoproliferative disorder in solid organ transplant recipients. Clin. Microbiol. Infect. 20 (Suppl. 7), 109–118 (2014).
Lin, R. & Liu, Q. Diagnosis and treatment of viral diseases in recipients of allogeneic hematopoietic stem cell transplantation. J. Hematol. Oncol. 6, 94 (2013).
Xuan, L. et al. Effects of intensified conditioning on Epstein-Barr virus and cytomegalovirus infections in allogeneic hematopoietic stem cell transplantation for hematological malignancies. J. Hematol. Oncol. 5, 46 (2012).
Liu, J. et al. Immunosuppressant indulges EBV reactivation and related lymphoproliferative disease by inhibiting Vδ2+ T cells activities after hematopoietic transplantation for blood malignancies. J. Immunother. Cancer 8, e000208 (2020).
Takagi, S., Takada, K. & Sairenji, T. Formation of intranuclear replication compartments of Epstein-Barr virus with redistribution of BZLF1 and BMRF1 gene products. Virology 185, 309–315 (1991).
Mentzer, S. J., Fingeroth, J., Reilly, J. J., Perrine, S. P. & Faller, D. V. Arginine butyrate-induced susceptibility to ganciclovir in an Epstein-Barr-virus-associated lymphoma. Blood Cell Mol. Dis. 24, 114–123 (1998).
Fong, I. W., Ho, J., Toy, C., Lo, B. & Fong, M. W. Value of long-term administration of acyclovir and similar agents for protecting against AIDS-related lymphoma: case-control and historical cohort studies. Clin. Infect. Dis. 30, 757–761 (2000).
Haverkos, B. et al. Targeted therapy with nanatinostat and valganciclovir in recurrent EBV-positive lymphoid malignancies: a phase 1b/2 study. Blood Adv. 7, 6339–6350 (2023).
Zhang, S., Yin, J. & Zhong, J. Chaetocin reactivates the lytic replication of Epstein-Barr virus from latency via reactive oxygen species. Sci. China Life Sci. 60, 66–71 (2017).
Hu, J. et al. Targeting Epstein-Barr virus oncoprotein LMP1-mediated high oxidative stress suppresses EBV lytic reactivation and sensitizes tumors to radiation therapy. Theranostics 10, 11921–11937 (2020).
Mehta, S. K. et al. Reactivation of latent Epstein-Barr virus: a comparison after exposure to gamma, proton, carbon, and iron radiation. Int. J. Mol. Sci. 19, 2961 (2018).
Hatayama, Y., Hashimoto, Y. & Motokura, T. Frequent co-reactivation of Epstein-Barr virus in patients with cytomegalovirus viremia under immunosuppressive therapy and/or chemotherapy. J. Int. Med. Res. 48, 300060520972880 (2020).
Hirsiger, J. R. et al. Syphilis reactivates latent Epstein-Barr virus reservoir via Toll-like receptor 2 and B-cell receptor activation. Open. Forum Infect. Dis. 6, ofz317 (2019).
Makielski, K. R. et al. Human papillomavirus promotes Epstein-Barr virus maintenance and lytic reactivation in immortalized oral keratinocytes. Virology 495, 52–62 (2016).
Guidry, J. T. et al. Inhibition of Epstein-Barr virus replication in human papillomavirus-immortalized keratinocytes. J. Virol. 93, e01216–e01218 (2019).
Simonnet, A. et al. High incidence of Epstein-Barr virus, cytomegalovirus, and human-herpes virus-6 reactivations in critically ill patients with COVID-19. Infect. Dis. Now. 51, 296–299 (2021).
Gold, J. E., Okyay, R. A., Licht, W. E. & Hurley, D. J. Investigation of long COVID prevalence and its relationship to Epstein-Barr virus reactivation. Pathogens 10, 763 (2021).
Preston-Alp, S. et al. Decitabine disrupts EBV genomic epiallele DNA methylation patterns around CTCF binding sites to increase chromatin accessibility and lytic transcription in gastric cancer. mBio 14, e0039623 (2023).
Kalla, M., Schmeinck, A., Bergbauer, M., Pich, D. & Hammerschmidt, W. AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome. Proc. Natl Acad. Sci. USA 107, 850–855 (2010).
Cohen, J. I. Epstein-Barr virus infection. N. Engl. J. Med. 343, 481–492 (2000).
Jochum, S., Ruiss, R., Moosmann, A., Hammerschmidt, W. & Zeidler, R. RNAs in Epstein-Barr virions control early steps of infection. Proc. Natl Acad. Sci. USA 109, E1396–E1404 (2012).
Price, A. M. & Luftig, M. A. Dynamic Epstein-Barr virus gene expression on the path to B-cell transformation. Adv. Virus Res. 88, 279–313 (2014).
Longnecker, R. M., Kieff, E. & Cohen, J. I. in Fields Virology 6th edn. (Wolters Kluwer Health Adis (ESP), 2013).
Babcock, G. J., Decker, L. L., Volk, M. & Thorley-Lawson, D. A. EBV persistence in memory B cells in vivo. Immunity 9, 395–404 (1998).
Hochberg, D. et al. Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J. Virol. 78, 5194–5204 (2004).
Miyashita, E. M., Yang, B., Babcock, G. J. & Thorley-Lawson, D. A. Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell. J. Virol. 71, 4882–4891 (1997).
Styles, C. T., Paschos, K., White, R. E. & Farrell, P. J. The cooperative functions of the EBNA3 proteins are central to EBV persistence and latency. Pathogens 7, 31 (2018).
Young, L. S. & Rickinson, A. B. Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4, 757–768 (2004).
Kanda, T. EBV-encoded latent genes. Adv. Exp. Med. Biol. 1045, 377–394 (2018).
Young, L. S., Yap, L. F. & Murray, P. G. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat. Rev. Cancer 16, 789–802 (2016).
Bhende, P. M., Dickerson, S. J., Sun, X., Feng, W. H. & Kenney, S. C. X-box-binding protein 1 activates lytic Epstein-Barr virus gene expression in combination with protein kinase D. J. Virol. 81, 7363–7370 (2007).
Laichalk, L. L. & Thorley-Lawson, D. A. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J. Virol. 79, 1296–1307 (2005).
Wu, D. Y., Krumm, A. & Schubach, W. H. Promoter-specific targeting of human SWI-SNF complex by Epstein-Barr virus nuclear protein 2. J. Virol. 74, 8893–8903 (2000).
Bristol, J. A. et al. A cancer-associated Epstein-Barr virus BZLF1 promoter variant enhances lytic infection. PLoS Pathog. 14, e1007179 (2018).
Tsurumi, T., Fujita, M. & Kudoh, A. Latent and lytic Epstein-Barr virus replication strategies. Rev. Med. Virol. 15, 3–15 (2005).
Glaser, R. et al. Stress-related immune suppression: health implications. Brain Behav. Immun. 1, 7–20 (1987).
Glaser, R. et al. Stress-related activation of Epstein-Barr virus. Brain Behav. Immun. 5, 219–232 (1991).
Birkenbach, M., Josefsen, K., Yalamanchili, R., Lenoir, G. & Kieff, E. Epstein-Barr virus-induced genes: first lymphocyte-specific G protein-coupled peptide receptors. J. Virol. 67, 2209–2220 (1993).
Rutkowska, A., Dev, K. K. & Sailer, A. W. The role of the oxysterol/EBI2 pathway in the immune and central nervous systems. Curr. Drug. Targets 17, 1851–1860 (2016).
Thorley-Lawson, D. A. EBV persistence — introducing the virus. Curr. Top. Microbiol. Immunol. 390, 151–209 (2015).
Rasche, L., Kapp, M., Einsele, H. & Mielke, S. EBV-induced post transplant lymphoproliferative disorders: a persisting challenge in allogeneic hematopoetic SCT. Bone Marrow Transpl. 49, 163–167 (2014).
Allen, U. & Preiksaitis, J. Epstein-Barr virus and posttransplant lymphoproliferative disorder in solid organ transplant recipients. Am. J. Transpl. 9, S87–S96 (2009).
Loechelt, B. J. et al. Screening and monitoring for infectious complications when immunosuppressive agents are studied in the treatment of autoimmune disorders. J. Pediatr. Infect. Dis. Soc. 4, 198–204 (2015).
Yu, S. F. et al. Detecting Epstein-Barr virus DNA from peripheral blood mononuclear cells in adult patients with systemic lupus erythematosus in Taiwan. Med. Microbiol. Immunol. 194, 115–120 (2005).
Moss, D. J. & Lutzky, V. P. EBV-specific immune response: early research and personal reminiscences. Curr. Top. Microbiol. Immunol. 390, 23–42 (2015).
Ascherio, A. et al. Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286, 3083–3088 (2001).
Rasmussen, N. S., Draborg, A. H., Nielsen, C. T., Jacobsen, S. & Houen, G. Antibodies to early EBV, CMV, and HHV6 antigens in systemic lupus erythematosus patients. Scand. J. Rheumatol. 44, 143–149 (2015).
Banko, A. et al. Epstein-Barr virus infection as potential indicator of the occurrence and clinical presentation of systemic lupus erythematosus. Front. Immunol. 14, 1307589 (2023).
Füst, G. The role of the Epstein-Barr virus in the pathogenesis of some autoimmune disorders — similarities and differences. Eur. J. Microbiol. Immunol. 1, 267–278 (2011).
Lupo, J. et al. Virological markers in Epstein-Barr virus-associated diseases. Viruses 15, 656 (2023).
Draborg, A., Izarzugaza, J. M. & Houen, G. How compelling are the data for Epstein-Barr virus being a trigger for systemic lupus and other autoimmune diseases? Curr. Opin. Rheumatol. 28, 398–404 (2016).
Wandinger, K. et al. Association between clinical disease activity and Epstein-Barr virus reactivation in MS. Neurology 55, 178–184 (2000).
Gross, A. J., Hochberg, D., Rand, W. M. & Thorley-Lawson, D. A. EBV and systemic lupus erythematosus: a new perspective. J. Immunol. 174, 6599–6607 (2005).
Kuusela, E. et al. Serum Epstein-Barr virus DNA, detected by droplet digital PCR, correlates with disease activity in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 36, 778–784 (2018).
McDermott, M., Molloy, M., Buckley, J. & Greally, J. Antibodies to Epstein-Barr viral antigens in familial rheumatoid arthritis. Ir. J. Med. Sci. 158, 203–205 (1989).
Erre, G. L. et al. Increased Epstein-Barr virus DNA load and antibodies against EBNA1 and EA in Sardinian patients with rheumatoid arthritis. Viral Immunol. 28, 385–390 (2015).
Petersen, J., Rhodes, G., Roudier, J. & Vaughan, J. H. Altered immune response to glycine-rich sequences of Epstein-Barr nuclear antigen-1 in patients with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum. 33, 993–1000 (1990).
Croia, C. et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann. Rheum. Dis. 72, 1559–1568 (2013).
Sakkas, L. I., Daoussis, D., Liossis, S. N. & Bogdanos, D. P. The infectious basis of ACPA-positive rheumatoid arthritis. Front. Microbiol. 8, 1853 (2017).
Roudier, J., Balandraud, N. & Auger, I. Anti PAD autoimmunity and rheumatoid arthritis. Jt. Bone Spine 85, 659–661 (2018).
Trier, N. H. et al. Antibodies to a strain-specific citrullinated Epstein-Barr virus peptide diagnoses rheumatoid arthritis. Sci. Rep. 8, 3684 (2018).
Cech, T. R. & Steitz, J. A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77–94 (2014).
Tsubota, K. et al. Increased levels of Epstein-Barr virus DNA in lacrimal glands of Sjögren’s syndrome patients. Acta Ophthalmol. Scand. 73, 425–430 (1995).
Pasoto, S. G. et al. EBV reactivation serological profile in primary Sjögren’s syndrome: an underlying trigger of active articular involvement? Rheumatol. Int. 33, 1149–1157 (2013).
Croia, C. et al. Implication of Epstein-Barr virus infection in disease-specific autoreactive B cell activation in ectopic lymphoid structures of Sjögren’s syndrome. Arthritis Rheumatol. 66, 2545–2557 (2014).
Hedstrom, A. K. et al. High levels of Epstein-Barr virus nuclear antigen-1-specific antibodies and infectious mononucleosis act both independently and synergistically to increase multiple sclerosis risk. Front. Neurol. 10, 1368 (2019).
Nielsen, T. R. et al. Effects of infectious mononucleosis and HLA-DRB1*15 in multiple sclerosis. Mult. Scler. 15, 431–436 (2009).
Cortese, M. et al. Serologic response to the Epstein-Barr virus peptidome and the risk for multiple sclerosis. JAMA Neurol. 81, 515–524 (2024).
Soldan, S. S. et al. Multiple sclerosis patient-derived spontaneous B cells have distinct EBV and host gene expression profiles in active disease. Nat. Microbiol. 9, 1540–1554 (2024).
Thorley-Lawson, D. A. Epstein-Barr virus: exploiting the immune system. Nat. Rev. Immunol. 1, 75–82 (2001).
Munz, C. Altered EBV specific immune control in multiple sclerosis. J. Neuroimmunol. 390, 578343 (2024).
Ressing, M. E. et al. Epstein-Barr virus evasion of CD8+ and CD4+ T cell immunity via concerted actions of multiple gene products. Semin. Cancer Biol. 18, 397–408 (2008).
Apcher, S. et al. mRNA translation regulation by the Gly-Ala repeat of Epstein-Barr virus nuclear antigen 1. J. Virol. 83, 1289–1298 (2009).
Apcher, S., Daskalogianni, C., Manoury, B. & Fåhraeus, R. Epstein Barr virus-encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLoS Pathog. 6, e1001151 (2010).
Lista, M. J. et al. Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat. Commun. 8, 16043 (2017).
Yao, Y., Kong, W., Yang, L., Ding, Y. & Cui, H. Immunity and immune evasion mechanisms of Epstein-Barr virus. Viral Immunol. 36, 303–317 (2023).
Quinn, L. L. et al. The missing link in Epstein-Barr virus immune evasion: the BDLF3 gene induces ubiquitination and downregulation of major histocompatibility complex Class I (MHC-I) and MHC-II. J. Virol. 90, 356–367 (2016).
Jilek, S. et al. HLA-B7-restricted EBV-specific CD8+ T cells are dysregulated in multiple sclerosis. J. Immunol. 188, 4671–4680 (2012).
Jilek, S. et al. Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain 131, 1712–1721 (2008).
Zdimerova, H. et al. Attenuated immune control of Epstein-Barr virus in humanized mice is associated with the multiple sclerosis risk factor HLA-DR15. Eur. J. Immunol. 51, 64–75 (2021).
Vietzen, H. et al. Ineffective control of Epstein-Barr-virus-induced autoimmunity increases the risk for multiple sclerosis. Cell 186, 5705–5718 e5713 (2023).
Sinigaglia, F. & Hammer, J. Defining rules for the peptide-MHC class II interaction. Curr. Opin. Immunol. 6, 52–56 (1994).
Elsner, R. A. & Shlomchik, M. J. Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 53, 1136–1150 (2020).
Cusick, M. F., Libbey, J. E. & Fujinami, R. S. Molecular mimicry as a mechanism of autoimmune disease. Clin. Rev. Allergy Immunol. 42, 102–111 (2012).
Chezar, I., Lobel-Lavi, L., Steinitz, M. & Laskov, R. Ongoing somatic hypermutation of the rearranged VH but not of the V-lambda gene in EBV-transformed rheumatoid factor-producing lymphoblastoid cell line. Mol. Immunol. 46, 80–90 (2008).
Jenks, S. A., Cashman, K. S., Woodruff, M. C., Lee, F. E. & Sanz, I. Extrafollicular responses in humans and SLE. Immunol. Rev. 288, 136–148 (2019).
Di Niro, R. et al. Salmonella infection drives promiscuous B cell activation followed by extrafollicular affinity maturation. Immunity 43, 120–131 (2015).
McClain, M. T. et al. An altered immune response to Epstein-Barr nuclear antigen 1 in pediatric systemic lupus erythematosus. Arthritis Rheum. 54, 360–368 (2006).
Laurynenka, V., Ding, L., Kaufman, K. M., James, J. A. & Harley, J. B. A high prevalence of anti-EBNA1 heteroantibodies in systemic lupus erythematosus (SLE) supports anti-EBNA1 as an origin for SLE autoantibodies. Front. Immunol. 13, 830993 (2022).
Thorley-Lawson, D. A., Hawkins, J. B., Tracy, S. I. & Shapiro, M. The pathogenesis of Epstein-Barr virus persistent infection. Curr. Opin. Virol. 3, 227–232 (2013).
Vaughn, S. E., Kottyan, L. C., Munroe, M. E. & Harley, J. B. Genetic susceptibility to lupus: the biological basis of genetic risk found in B cell signaling pathways. J. Leukoc. Biol. 92, 577–591 (2012).
Alarcón-Riquelme, M. E. et al. Genome-wide association study in an Amerindian Ancestry population reveals novel systemic lupus erythematosus risk loci and the role of European admixture. Arthritis Rheumatol. 68, 932–943 (2016).
Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).
Sun, C. et al. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat. Genet. 48, 323–330 (2016).
Liu, C. D., Lee, H. L. & Peng, C. W. B cell-specific transcription activator PAX5 recruits p300 to support EBNA1-driven transcription. J. Virol. 94, e02028–e02119 (2020).
Tempera, I. et al. Identification of MEF2B, EBF1, and IL6R as direct gene targets of Epstein-Barr Virus (EBV) nuclear antigen 1 critical for EBV-infected B-lymphocyte survival. J. Virol. 90, 345–355 (2016).
Soni, V., Cahir-McFarland, E. & Kieff, E. LMP1 TRAFficking activates growth and survival pathways. Adv. Exp. Med. Biol. 597, 173–187 (2007).
Minamitani, T. et al. Evasion of affinity-based selection in germinal centers by Epstein-Barr virus LMP2A. Proc. Natl Acad. Sci. USA 112, 11612–11617 (2015).
Altmann, M. & Hammerschmidt, W. Epstein-Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLoS Biol. 3, e404 (2005).
Barth, S. et al. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 36, 666–675 (2008).
Cullen, B. R. Herpesvirus microRNAs: phenotypes and functions. Curr. Opin. Virol. 1, 211–215 (2011).
Skalsky, R. L. et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog. 8, e1002484 (2012).
Seto, E. et al. Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog. 6, e1001063 (2010).
Feederle, R. et al. A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog. 7, e1001294 (2011).
Samanta, M., Iwakiri, D., Kanda, T., Imaizumi, T. & Takada, K. EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. EMBO J. 25, 4207–4214 (2006).
Yokoe, S. et al. Epstein-Barr virus promotes the production of inflammatory cytokines in gingival fibroblasts and RANKL-induced osteoclast differentiation in RAW264.7 cells. Int. J. Mol. Sci. 23, 809 (2022).
Yokoi, T. et al. Epstein-Barr virus-immortalized B cells produce IL-6 as an autocrine growth factor. Immunology 70, 100–105 (1990).
Gires, O. et al. Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J. 16, 6131–6140 (1997).
Caldwell, R. G., Wilson, J. B., Anderson, S. J. & Longnecker, R. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9, 405–411 (1998).
Babcock, G. J., Hochberg, D. & Thorley-Lawson, A. D. The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13, 497–506 (2000).
Panagopoulos, D., Victoratos, P., Alexiou, M., Kollias, G. & Mosialos, G. Comparative analysis of signal transduction by CD40 and the Epstein-Barr virus oncoprotein LMP1 in vivo. J. Virol. 78, 13253–13261 (2004).
Swanson-Mungerson, M. A., Caldwell, R. G., Bultema, R. & Longnecker, R. Epstein-Barr virus LMP2A alters in vivo and in vitro models of B-cell anergy, but not deletion, in response to autoantigen. J. Virol. 79, 7355–7362 (2005).
Roughan, J. E. & Thorley-Lawson, D. A. The intersection of Epstein-Barr virus with the germinal center. J. Virol. 83, 3968–3976 (2009).
Sutkowski, N., Chen, G., Calderon, G. & Huber, B. T. Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. J. Virol. 78, 7852–7860 (2004).
Sutkowski, N., Conrad, B., Thorley-Lawson, D. A. & Huber, B. T. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 15, 579–589 (2001).
Stastny, P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N. Engl. J. Med. 298, 869–871 (1978).
Auger, I. & Roudier, J. HLA-DR and the development of rheumatoid arthritis. Autoimmunity 26, 123–128 (1997).
Ollier, W. & Thomson, W. Population genetics of rheumatoid arthritis. Rheum. Dis. Clin. North. Am. 18, 741–759 (1992).
Albani, S., Tuckwell, J. E., Esparza, L., Carson, D. A. & Roudier, J. The susceptibility sequence to rheumatoid arthritis is a cross-reactive B cell epitope shared by the Escherichia coli heat shock protein dnaJ and the histocompatibility leukocyte antigen DRB10401 molecule. J. Clin. Invest. 89, 327–331 (1992).
Roudier, J., Petersen, J., Rhodes, G. H., Luka, J. & Carson, D. A. Susceptibility to rheumatoid arthritis maps to a T-cell epitope shared by the HLA-Dw4 DR beta-1 chain and the Epstein-Barr virus glycoprotein gp110. Proc. Natl Acad. Sci. USA 86, 5104–5108 (1989).
Nolan, D. et al. Contributions of vitamin D response elements and HLA promoters to multiple sclerosis risk. Neurology 79, 538–546 (2012).
Lincoln, M. R. et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat. Genet. 37, 1108–1112 (2005).
A meta-analysis of whole genome linkage screens in multiple sclerosis. J. Neuroimmunol. 143, 39-46 (2003).
Menegatti, J., Schub, D., Schafer, M., Grasser, F. A. & Ruprecht, K. HLA-DRB1*15:01 is a co-receptor for Epstein-Barr virus, linking genetic and environmental risk factors for multiple sclerosis. Eur. J. Immunol. 51, 2348–2350 (2021).
Agostini, S. et al. HLA alleles modulate EBV viral load in multiple sclerosis. J. Transl. Med. 16, 80 (2018).
Wang, J. et al. HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell 183, 1264–1281.e20 (2020).
Sundqvist, E. et al. Epstein-Barr virus and multiple sclerosis: interaction with HLA. Genes. Immun. 13, 14–20 (2012).
Kanda, T., Yajima, M. & Ikuta, K. Epstein-Barr virus strain variation and cancer. Cancer Sci. 110, 1132–1139 (2019).
Palser, A. L. et al. Genome diversity of Epstein-Barr virus from multiple tumor types and normal infection. J. Virol. 89, 5222–5237 (2015).
Mechelli, R. et al. Epstein-Barr virus genetic variants are associated with multiple sclerosis. Neurology 84, 1362–1368 (2015).
Stashenko, P., Nadler, L. M., Hardy, R. & Schlossman, S. F. Characterization of a human B lymphocyte-specific antigen. J. Immunol. 125, 1678–1685 (1980).
Dörner, T. & Burmester, G. R. The role of B cells in rheumatoid arthritis: mechanisms and therapeutic targets. Curr. Opin. Rheumatol. 15, 246–252 (2003).
Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).
Arnold, J. et al. Efficacy and safety of obinutuzumab in systemic lupus erythematosus patients with secondary non-response to rituximab. Rheumatology 61, 4905–4909 (2022).
Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).
Cui, X. & Snapper, C. M. Epstein Barr virus: development of vaccines and immune cell therapy for EBV-associated diseases. Front. Immunol. 12, 734471 (2021).
Business Wire. Atara Biotherapeutics announces primary analysis data from phase 2 EMBOLD clinical trial of ATA188 in non-active progressive multiple sclerosis. https://www.businesswire.com/news/home/20231108902565/en/ (8 November 2023).
Lees, J. F. et al. The Epstein-Barr virus candidate vaccine antigen gp340/220 is highly conserved between virus types A and B. Virology 195, 578–586 (1993).
Gu, S. Y. et al. First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen. Dev. Biol. Stand. 84, 171–177 (1995).
Moutschen, M. et al. Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine in healthy adults. Vaccine 25, 4697–4705 (2007).
Cohen, J. I. Vaccine development for Epstein-Barr virus. Adv. Exp. Med. Biol. 1045, 477–493 (2018).
Wei, C. J. et al. A bivalent Epstein-Barr virus vaccine induces neutralizing antibodies that block infection and confer immunity in humanized mice. Sci. Transl. Med. 14, eabf3685 (2022).
Chen, W. H. et al. Epstein-Barr virus gH/gL has multiple sites of vulnerability for virus neutralization and fusion inhibition. Immunity 55, 2135–2148 e2136 (2022).
Escalante, G. M., Mutsvunguma, L. Z., Muniraju, M., Rodriguez, E. & Ogembo, J. G. Four decades of prophylactic EBV vaccine research: a systematic review and historical perspective. Front. Immunol. 13, 867918 (2022).
Rozman, M., Korac, P., Jambrosic, K. & Zidovec Lepej, S. Progress in prophylactic and therapeutic EBV vaccine development based on molecular characteristics of EBV target antigens. Pathogens 11, 864 (2022).
Atkins, S. L. et al. Small molecule screening identifies inhibitors of the Epstein-Barr virus deubiquitinating enzyme, BPLF1. Antivir. Res. 173, 104649 (2020).
Monaco, M. C. G. et al. EBNA1 inhibitors block proliferation of spontaneous lymphoblastoid cell lines from patients with multiple sclerosis and healthy controls. Neurol. Neuroimmunol. Neuroinflamm. 10, e200149 (2023).
Zhai, L. Y. et al. Targeting the RNA G-quadruplex and protein interactome for antiviral therapy. J. Med. Chem. 65, 10161–10182 (2022).
Zhang, B. et al. Targeting the transmembrane domain 5 of latent membrane protein 1 using small molecule modulators. Eur. J. Med. Chem. 214, 113210 (2021).
Arbuckle, M. R., Reichlin, M., Harley, J. B. & James, J. A. Shared early autoantibody recognition events in the development of anti-Sm B/B′ in human lupus. Scand. J. Immunol. 50, 447–455 (1999).
McClain, M. T. et al. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat. Med. 11, 85–89 (2005).
Sabbatini, A., Bombardieri, S. & Migliorini, P. Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein-Barr virus-encoded nuclear antigen EBNA I. Eur. J. Immunol. 23, 1146–1152 (1993).
Sabbatini, A., Dolcher, M. P., Marchini, B., Bombardieri, S. & Migliorini, P. Mapping of epitopes on the SmD molecule: the use of multiple antigen peptides to measure autoantibodies in systemic lupus erythematosus. J. Rheumatol. 20, 1679–1683 (1993).
Csorba, K. et al. Anti-C1q antibodies as occurring in systemic lupus erythematosus could be induced by an Epstein-Barr virus-derived antigenic site. Front. Immunol. 10, 2619 (2019).
Baboonian, C., Venables, P. J., Williams, D. G., Williams, R. O. & Maini, R. N. Cross reaction of antibodies to a glycine/alanine repeat sequence of Epstein-Barr virus nuclear antigen-1 with collagen, cytokeratin, and actin. Ann. Rheum. Dis. 50, 772–775 (1991).
Davies, J. M., Mackay, I. R. & Rowley, M. J. Rheumatoid arthritis sera react with a phage-displayed peptide selected by a monoclonal antibody to type II collagen that has homology to EBNA-1. Autoimmunity 30, 53–59 (1999).
Mahler, M., Mierau, R., Genth, E. & Blüthner, M. Development of a CENP-A/CENP-B-specific immune response in a patient with systemic sclerosis. Arthritis Rheum. 46, 1866–1872 (2002).
Tengvall, K. et al. Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc. Natl Acad. Sci. USA 116, 16955–16960 (2019).
Lindsey, J. W., deGannes, S. L., Pate, K. A. & Zhao, X. Antibodies specific for Epstein-Barr virus nuclear antigen-1 cross-react with human heterogeneous nuclear ribonucleoprotein L. Mol. Immunol. 69, 7–12 (2016).
Fairweather, D., Frisancho-Kiss, S. & Rose, N. R. Sex differences in autoimmune disease from a pathological perspective. Am. J. Pathol. 173, 600–609 (2008).
Lahita, R. G. The immunoendocrinology of systemic lupus erythematosus. Clin. Immunol. 172, 98–100 (2016).
Crowson, C. S. et al. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum. 63, 633–639 (2011).
Harbo, H. F., Gold, R. & Tintoré, M. Sex and gender issues in multiple sclerosis. Ther. Adv. Neurol. Disord. 6, 237–248 (2013).
Dou, D. R. et al. Xist ribonucleoproteins promote female sex-biased autoimmunity. Cell 187, 733–749 e716 (2024).
Wagner, H. J., Hornef, M., Teichert, H. M. & Kirchner, H. Sex difference in the serostatus of adults to the Epstein-Barr virus. Immunobiology 190, 424–429 (1994).
Nielsen, T. R., Pedersen, M., Rostgaard, K., Frisch, M. & Hjalgrim, H. Correlations between Epstein-Barr virus antibody levels and risk factors for multiple sclerosis in healthy individuals. Mult. Scler. 13, 420–423 (2007).
Al-Obaidi, A. B., Ali, Z. A., Rasool Almashta, S. A. & Faisel Ghazi, H. The potential role of Epstein Barr virus in multiple sclerosis molecular and serological study. Wiad. Lek. 75, 691–696 (2022).
Stowe, R. P., Pierson, D. L. & Barrett, A. D. Elevated stress hormone levels relate to Epstein-Barr virus reactivation in astronauts. Psychosom. Med. 63, 891–895 (2001).
Guevara, J. E., Gilbert, S., Murdock, K. W., Stowe, R. P. & Fagundes, C. P. Sex differences in executive functioning and latent herpesvirus reactivation among bereaved and nonbereaved individuals. Stress. Health 35, 396–406 (2019).
Ford, J. L. & Stowe, R. P. Depressive symptoms are associated with salivary shedding of Epstein-Barr virus in female adolescents: the role of sex differences. Psychoneuroendocrinology 86, 128–133 (2017).
Yamanashi, H. et al. Association between Epstein-Barr virus serological reactivation and psychological distress: a cross-sectional study of Japanese community-dwelling older adults. Aging 14, 8258–8269 (2022).
Keane, J. T. et al. Gender and the sex hormone estradiol affect multiple sclerosis risk gene expression in Epstein-Barr virus-infected B cells. Front. Immunol. 12, 732694 (2021).
Zhao, B. et al. RNAs induced by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proc. Natl Acad. Sci. USA 103, 1900–1905 (2006).
Acknowledgements
We thank members of the Robinson, Steinman and Lanz labs for their scientific insights and discussion. We acknowledge funding from NIH R01 AI173189, NIH PATHO-PH2-SUB_17_23, DoD HT9425-23-1-0595 and the Lupus Research Alliance.
Author information
Authors and Affiliations
Contributions
All authors contributed substantially to review of the literature and discussion of the content. W.H.R. and Z.Z.L. researched data for the article, wrote the article, and W.H.R. edited and revised the article. All authors reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
W.H.R. and T.V.L. are consultants for and own equity in Flatiron Bio, and W.H.R. serves on the board of directors of Flatiron Bio. W.H.R., S.Y. and T.V.L. own equity in Ebvio, and W.H.R. serves on the board of directors of Ebvio.
Peer review
Peer review information
Nature Reviews Rheumatology thanks John Harley, Gunnar Houen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Robinson, W.H., Younis, S., Love, Z.Z. et al. Epstein–Barr virus as a potentiator of autoimmune diseases. Nat Rev Rheumatol 20, 729–740 (2024). https://doi.org/10.1038/s41584-024-01167-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41584-024-01167-9
This article is cited by
-
Epstein–Barr virus induces aberrant B cell migration and diapedesis via FAK-dependent chemotaxis pathways
Nature Communications (2025)
-
Neoself-antigen presentation in SLE: Mordred’s coronation in Arthur’s absence
Cell Research (2025)
-
Distinct functions of CD4+ and CD8+ regulatory T cells in autoimmunity
Nature Immunology (2025)
-
Multiple Sclerosis in People of Diverse Racial and Ethnic Backgrounds: Presentation, Disease Course, and Interactions with Disease-Modifying Therapy
CNS Drugs (2025)
-
The shared genetic etiology of autoimmune disorders and interstitial lung disease: insights from large-scale genome-wide cross-trait analysis
Clinical and Experimental Medicine (2025)