Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epstein–Barr virus as a potentiator of autoimmune diseases

Abstract

The Epstein–Barr virus (EBV) is epidemiologically associated with development of autoimmune diseases, including systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. Although there is well-established evidence for this association, the underlying mechanistic basis remains incompletely defined. In this Review, we discuss the role of EBV infection as a potentiator of autoimmune rheumatic diseases. We review the EBV life cycle, viral transcription programmes, serological profiles and lytic reactivation. We discuss the epidemiological and mechanistic associations of EBV with systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. We describe the potential mechanisms by which EBV might promote autoimmunity, including EBV nuclear antigen 1-mediated molecular mimicry of human autoantigens; EBV-mediated B cell reprogramming, including EBV nuclear antigen 2-mediated dysregulation of autoimmune susceptibility genes; EBV and host genetic factors, including the potential for autoimmunity-promoting strains of EBV; EBV immune evasion and insufficient host responses to control infection; lytic reactivation; and other mechanisms. Finally, we discuss the therapeutic implications and potential therapeutic approaches to targeting EBV for the treatment of autoimmune disease.

Key points

  • Epstein–Barr virus (EBV) infection is epidemiologically associated with the autoimmune rheumatic diseases systemic lupus erythematosus, Sjögren syndrome and rheumatoid arthritis, as well as other autoimmune diseases, including multiple sclerosis.

  • There are multiple non-exclusive mechanisms by which EBV might potentiate autoimmunity, including molecular mimicry; B cell reprogramming; genetic factors, including autoimmunity-promoting strains of EBV and host genetics; immune evasion; and lytic reactivation.

  • Ongoing studies are linking EBV infection and EBV reactivation with development of autoimmunity and disease activity.

  • Ongoing studies are defining the molecular and cellular mechanisms by which EBV might mediate autoimmune diseases.

  • Therapeutic targeting of EBV could provide a fundamental treatment approach for EBV-associated autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EBV life cycle and associations with autoimmunity.
Fig. 2: Mechanisms by which EBV could potentiate autoimmunity.

Similar content being viewed by others

References

  1. Lossius, A., Johansen, J. N., Torkildsen, Ø., Vartdal, F. & Holmøy, T. Epstein-Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis — association and causation. Viruses 4, 3701–3730 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kitagawa, H., Iho, S., Yokochi, T. & Hoshino, T. Detection of antibodies to the Epstein-Barr virus nuclear antigens in the sera from patients with systemic lupus erythematosus. Immunol. Lett. 17, 249–252 (1988).

    CAS  PubMed  Google Scholar 

  3. Jog, N. R. & James, J. A. Epstein Barr virus and autoimmune responses in systemic lupus erythematosus. Front. Immunol. 11, 623944 (2020).

    CAS  PubMed  Google Scholar 

  4. James, J. A. et al. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J. Clin. Invest. 100, 3019–3026 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. James, J. A. et al. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum. 44, 1122–1126 (2001).

    CAS  PubMed  Google Scholar 

  6. Li, Z. X., Zeng, S., Wu, H. X. & Zhou, Y. The risk of systemic lupus erythematosus associated with Epstein-Barr virus infection: a systematic review and meta-analysis. Clin. Exp. Med. 19, 23–36 (2019).

    CAS  PubMed  Google Scholar 

  7. Liu, Z. & Chu, A. Sjögren’s syndrome and viral infections. Rheumatol. Ther. 8, 1051–1059 (2021).

    PubMed  PubMed Central  Google Scholar 

  8. Toda, I., Ono, M., Fujishima, H. & Tsubota, K. Sjögren’s syndrome (SS) and Epstein-Barr virus (EBV) reactivation. Ocul. Immunol. Inflamm. 2, 101–109 (1994).

    CAS  PubMed  Google Scholar 

  9. Whittingham, S., McNeilage, L. J. & Mackay, I. R. Epstein-Barr virus as an etiological agent in primary Sjogren’s syndrome. Med. Hypotheses 22, 373–386 (1987).

    CAS  PubMed  Google Scholar 

  10. Toussirot, E. & Roudier, J. Pathophysiological links between rheumatoid arthritis and the Epstein-Barr virus: an update. Jt. Bone Spine 74, 418–426 (2007).

    CAS  Google Scholar 

  11. Balandraud, N. et al. Epstein-Barr virus load in the peripheral blood of patients with rheumatoid arthritis: accurate quantification using real-time polymerase chain reaction. Arthritis Rheum. 48, 1223–1228 (2003).

    CAS  PubMed  Google Scholar 

  12. Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022).

    CAS  PubMed  Google Scholar 

  13. Moon, U. Y. et al. Patients with systemic lupus erythematosus have abnormally elevated Epstein-Barr virus load in blood. Arthritis Res. Ther. 6, R295–302 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kang, I. et al. Defective control of latent Epstein-Barr virus infection in systemic lupus erythematosus. J. Immunol. 172, 1287–1294 (2004).

    CAS  PubMed  Google Scholar 

  15. Sorgato, C. C. et al. EBV and CMV viral load in rheumatoid arthritis and their role in associated Sjögren’s syndrome. J. Oral. Pathol. Med. 49, 693–700 (2020).

    PubMed  Google Scholar 

  16. Harley, J. B., Harley, I. T., Guthridge, J. M. & James, J. A. The curiously suspicious: a role for Epstein-Barr virus in lupus. Lupus 15, 768–777 (2006).

    CAS  PubMed  Google Scholar 

  17. James, J. A., Harley, J. B. & Scofield, R. H. Epstein-Barr virus and systemic lupus erythematosus. Curr. Opin. Rheumatol. 18, 462–467 (2006).

    PubMed  Google Scholar 

  18. Chen, C. J. et al. High prevalence of immunoglobulin A antibody against Epstein-Barr virus capsid antigen in adult patients with lupus with disease flare: case control studies. J. Rheumatol. 32, 44–47 (2005).

    PubMed  Google Scholar 

  19. Fechtner, S. et al. Antibody responses to Epstein-Barr virus in the preclinical period of rheumatoid arthritis suggest the presence of increased viral reactivation cycles. Arthritis Rheumatol. 74, 597–603 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jog, N. R. et al. Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Ann. Rheum. Dis. 78, 1235–1241 (2019).

    CAS  PubMed  Google Scholar 

  21. Harley, J. B. et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat. Genet. 50, 699–707 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hong, T. et al. Epstein-Barr virus nuclear antigen 2 extensively rewires the human chromatin landscape at autoimmune risk loci. Genome Res. 31, 2185–2198 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Thomas, O. G. et al. Cross-reactive EBNA1 immunity targets alpha-crystallin B and is associated with multiple sclerosis. Sci. Adv. 9, eadg3032 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pender, M. P., Csurhes, P. A., Lenarczyk, A., Pfluger, C. M. & Burrows, S. R. Decreased T cell reactivity to Epstein-Barr virus infected lymphoblastoid cell lines in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 80, 498–505 (2009).

    CAS  PubMed  Google Scholar 

  26. Berner, B. R. et al. Phenotypic and functional analysis of EBV-specific memory CD8 cells in SLE. Cell Immunol. 235, 29–38 (2005).

    CAS  PubMed  Google Scholar 

  27. Larsen, M. et al. Exhausted cytotoxic control of Epstein-Barr virus in human lupus. PLoS Pathog. 7, e1002328 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pender, M. P., Csurhes, P. A., Pfluger, C. M. & Burrows, S. R. CD8 T cell deficiency impairs control of Epstein–Barr virus and worsens with age in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 83, 353–354 (2012).

    PubMed  Google Scholar 

  29. Pender, M. P., Csurhes, P. A., Burrows, J. M. & Burrows, S. R. Defective T-cell control of Epstein-Barr virus infection in multiple sclerosis. Clin. Transl. Immunol. 6, e126 (2017).

    Google Scholar 

  30. Willis, S. N. et al. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 132, 3318–3328 (2009).

    PubMed  PubMed Central  Google Scholar 

  31. Simpson, S. Jr. et al. EBV & HHV6 reactivation is infrequent and not associated with MS clinical course. Acta Neurol. Scand. 130, 328–337 (2014).

    PubMed  Google Scholar 

  32. Münz, C. in Current Topics in Microbiology and Immunology (Springer, 2015).

  33. Soldan, S. S. & Lieberman, P. M. Epstein-Barr virus and multiple sclerosis. Nat. Rev. Microbiol. 21, 51–64 (2023).

    CAS  PubMed  Google Scholar 

  34. Stanfield, B. A. & Luftig, M. A. Recent advances in understanding Epstein-Barr virus. F1000Res 6, 386 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Moquin, S. A. et al. The Epstein-Barr virus episome maneuvers between nuclear chromatin compartments during reactivation. J. Virol. 92, e01413–e01417 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Iwakiri, D. Multifunctional non-coding Epstein-Barr virus encoded RNAs (EBERs) contribute to viral pathogenesis. Virus Res. 212, 30–38 (2016).

    CAS  PubMed  Google Scholar 

  37. Thorley-Lawson, D. A. & Gross, A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N. Engl. J. Med. 350, 1328–1337 (2004).

    CAS  PubMed  Google Scholar 

  38. Chan, K. C. et al. Investigation into the origin and tumoral mass correlation of plasma Epstein-Barr virus DNA in nasopharyngeal carcinoma. Clin. Chem. 51, 2192–2195 (2005).

    CAS  PubMed  Google Scholar 

  39. Kondo, S. et al. EBV genome variations enhance clinicopathological features of nasopharyngeal carcinoma in a non-endemic region. Cancer Sci. 113, 2446–2456 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Song, L. et al. Identification of anti-Epstein-Barr virus (EBV) antibody signature in EBV-associated gastric carcinoma. Gastric Cancer 24, 858–867 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Levin, L. I. et al. Atypical prediagnosis Epstein-Barr virus serology restricted to EBV-positive Hodgkin lymphoma. Blood 120, 3750–3755 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. De Leo, A. et al. Inhibition of autophagy in EBV-positive Burkitt’s lymphoma cells enhances EBV lytic genes expression and replication. Cell Death Dis. 6, e1876 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Morishima, S. et al. Increased T-cell responses to Epstein-Barr virus with high viral load in patients with Epstein-Barr virus-positive diffuse large B-cell lymphoma. Leuk. Lymphoma 56, 1072–1078 (2015).

    CAS  PubMed  Google Scholar 

  44. Cohen, M. et al. Epstein-Barr virus lytic cycle involvement in diffuse large B cell lymphoma. Hematol. Oncol. 36, 98–103 (2018).

    CAS  PubMed  Google Scholar 

  45. Huang, Y. et al. Serum EBV EA-IgA and VCA-IgA antibodies can be used for risk group stratification and prognostic prediction in extranodal NK/T cell lymphoma: 24-year experience at a single institution. Ann. Hematol. 96, 1331–1342 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, Z. et al. Characterization of the humoral immune response to the EBV proteome in extranodal NK/T-cell lymphoma. Sci. Rep. 11, 23664 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Peric, Z. et al. Features of Epstein-Barr Virus (EBV) reactivation after reduced intensity conditioning allogeneic hematopoietic stem cell transplantation. Leukemia 25, 932–938 (2011).

    CAS  PubMed  Google Scholar 

  48. San-Juan, R. et al. Epstein-Barr virus-related post-transplant lymphoproliferative disorder in solid organ transplant recipients. Clin. Microbiol. Infect. 20 (Suppl. 7), 109–118 (2014).

    PubMed  Google Scholar 

  49. Lin, R. & Liu, Q. Diagnosis and treatment of viral diseases in recipients of allogeneic hematopoietic stem cell transplantation. J. Hematol. Oncol. 6, 94 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Xuan, L. et al. Effects of intensified conditioning on Epstein-Barr virus and cytomegalovirus infections in allogeneic hematopoietic stem cell transplantation for hematological malignancies. J. Hematol. Oncol. 5, 46 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, J. et al. Immunosuppressant indulges EBV reactivation and related lymphoproliferative disease by inhibiting Vδ2+ T cells activities after hematopoietic transplantation for blood malignancies. J. Immunother. Cancer 8, e000208 (2020).

    PubMed  PubMed Central  Google Scholar 

  52. Takagi, S., Takada, K. & Sairenji, T. Formation of intranuclear replication compartments of Epstein-Barr virus with redistribution of BZLF1 and BMRF1 gene products. Virology 185, 309–315 (1991).

    CAS  PubMed  Google Scholar 

  53. Mentzer, S. J., Fingeroth, J., Reilly, J. J., Perrine, S. P. & Faller, D. V. Arginine butyrate-induced susceptibility to ganciclovir in an Epstein-Barr-virus-associated lymphoma. Blood Cell Mol. Dis. 24, 114–123 (1998).

    CAS  Google Scholar 

  54. Fong, I. W., Ho, J., Toy, C., Lo, B. & Fong, M. W. Value of long-term administration of acyclovir and similar agents for protecting against AIDS-related lymphoma: case-control and historical cohort studies. Clin. Infect. Dis. 30, 757–761 (2000).

    CAS  PubMed  Google Scholar 

  55. Haverkos, B. et al. Targeted therapy with nanatinostat and valganciclovir in recurrent EBV-positive lymphoid malignancies: a phase 1b/2 study. Blood Adv. 7, 6339–6350 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, S., Yin, J. & Zhong, J. Chaetocin reactivates the lytic replication of Epstein-Barr virus from latency via reactive oxygen species. Sci. China Life Sci. 60, 66–71 (2017).

    CAS  PubMed  Google Scholar 

  57. Hu, J. et al. Targeting Epstein-Barr virus oncoprotein LMP1-mediated high oxidative stress suppresses EBV lytic reactivation and sensitizes tumors to radiation therapy. Theranostics 10, 11921–11937 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mehta, S. K. et al. Reactivation of latent Epstein-Barr virus: a comparison after exposure to gamma, proton, carbon, and iron radiation. Int. J. Mol. Sci. 19, 2961 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Hatayama, Y., Hashimoto, Y. & Motokura, T. Frequent co-reactivation of Epstein-Barr virus in patients with cytomegalovirus viremia under immunosuppressive therapy and/or chemotherapy. J. Int. Med. Res. 48, 300060520972880 (2020).

    CAS  PubMed  Google Scholar 

  60. Hirsiger, J. R. et al. Syphilis reactivates latent Epstein-Barr virus reservoir via Toll-like receptor 2 and B-cell receptor activation. Open. Forum Infect. Dis. 6, ofz317 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. Makielski, K. R. et al. Human papillomavirus promotes Epstein-Barr virus maintenance and lytic reactivation in immortalized oral keratinocytes. Virology 495, 52–62 (2016).

    CAS  PubMed  Google Scholar 

  62. Guidry, J. T. et al. Inhibition of Epstein-Barr virus replication in human papillomavirus-immortalized keratinocytes. J. Virol. 93, e01216–e01218 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. Simonnet, A. et al. High incidence of Epstein-Barr virus, cytomegalovirus, and human-herpes virus-6 reactivations in critically ill patients with COVID-19. Infect. Dis. Now. 51, 296–299 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gold, J. E., Okyay, R. A., Licht, W. E. & Hurley, D. J. Investigation of long COVID prevalence and its relationship to Epstein-Barr virus reactivation. Pathogens 10, 763 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Preston-Alp, S. et al. Decitabine disrupts EBV genomic epiallele DNA methylation patterns around CTCF binding sites to increase chromatin accessibility and lytic transcription in gastric cancer. mBio 14, e0039623 (2023).

    PubMed  Google Scholar 

  66. Kalla, M., Schmeinck, A., Bergbauer, M., Pich, D. & Hammerschmidt, W. AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome. Proc. Natl Acad. Sci. USA 107, 850–855 (2010).

    CAS  PubMed  Google Scholar 

  67. Cohen, J. I. Epstein-Barr virus infection. N. Engl. J. Med. 343, 481–492 (2000).

    CAS  PubMed  Google Scholar 

  68. Jochum, S., Ruiss, R., Moosmann, A., Hammerschmidt, W. & Zeidler, R. RNAs in Epstein-Barr virions control early steps of infection. Proc. Natl Acad. Sci. USA 109, E1396–E1404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Price, A. M. & Luftig, M. A. Dynamic Epstein-Barr virus gene expression on the path to B-cell transformation. Adv. Virus Res. 88, 279–313 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Longnecker, R. M., Kieff, E. & Cohen, J. I. in Fields Virology 6th edn. (Wolters Kluwer Health Adis (ESP), 2013).

  71. Babcock, G. J., Decker, L. L., Volk, M. & Thorley-Lawson, D. A. EBV persistence in memory B cells in vivo. Immunity 9, 395–404 (1998).

    CAS  PubMed  Google Scholar 

  72. Hochberg, D. et al. Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J. Virol. 78, 5194–5204 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Miyashita, E. M., Yang, B., Babcock, G. J. & Thorley-Lawson, D. A. Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell. J. Virol. 71, 4882–4891 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Styles, C. T., Paschos, K., White, R. E. & Farrell, P. J. The cooperative functions of the EBNA3 proteins are central to EBV persistence and latency. Pathogens 7, 31 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Young, L. S. & Rickinson, A. B. Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4, 757–768 (2004).

    CAS  PubMed  Google Scholar 

  76. Kanda, T. EBV-encoded latent genes. Adv. Exp. Med. Biol. 1045, 377–394 (2018).

    CAS  PubMed  Google Scholar 

  77. Young, L. S., Yap, L. F. & Murray, P. G. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat. Rev. Cancer 16, 789–802 (2016).

    CAS  PubMed  Google Scholar 

  78. Bhende, P. M., Dickerson, S. J., Sun, X., Feng, W. H. & Kenney, S. C. X-box-binding protein 1 activates lytic Epstein-Barr virus gene expression in combination with protein kinase D. J. Virol. 81, 7363–7370 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Laichalk, L. L. & Thorley-Lawson, D. A. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J. Virol. 79, 1296–1307 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu, D. Y., Krumm, A. & Schubach, W. H. Promoter-specific targeting of human SWI-SNF complex by Epstein-Barr virus nuclear protein 2. J. Virol. 74, 8893–8903 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bristol, J. A. et al. A cancer-associated Epstein-Barr virus BZLF1 promoter variant enhances lytic infection. PLoS Pathog. 14, e1007179 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Tsurumi, T., Fujita, M. & Kudoh, A. Latent and lytic Epstein-Barr virus replication strategies. Rev. Med. Virol. 15, 3–15 (2005).

    CAS  PubMed  Google Scholar 

  83. Glaser, R. et al. Stress-related immune suppression: health implications. Brain Behav. Immun. 1, 7–20 (1987).

    CAS  PubMed  Google Scholar 

  84. Glaser, R. et al. Stress-related activation of Epstein-Barr virus. Brain Behav. Immun. 5, 219–232 (1991).

    CAS  PubMed  Google Scholar 

  85. Birkenbach, M., Josefsen, K., Yalamanchili, R., Lenoir, G. & Kieff, E. Epstein-Barr virus-induced genes: first lymphocyte-specific G protein-coupled peptide receptors. J. Virol. 67, 2209–2220 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rutkowska, A., Dev, K. K. & Sailer, A. W. The role of the oxysterol/EBI2 pathway in the immune and central nervous systems. Curr. Drug. Targets 17, 1851–1860 (2016).

    CAS  PubMed  Google Scholar 

  87. Thorley-Lawson, D. A. EBV persistence — introducing the virus. Curr. Top. Microbiol. Immunol. 390, 151–209 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rasche, L., Kapp, M., Einsele, H. & Mielke, S. EBV-induced post transplant lymphoproliferative disorders: a persisting challenge in allogeneic hematopoetic SCT. Bone Marrow Transpl. 49, 163–167 (2014).

    CAS  Google Scholar 

  89. Allen, U. & Preiksaitis, J. Epstein-Barr virus and posttransplant lymphoproliferative disorder in solid organ transplant recipients. Am. J. Transpl. 9, S87–S96 (2009).

    Google Scholar 

  90. Loechelt, B. J. et al. Screening and monitoring for infectious complications when immunosuppressive agents are studied in the treatment of autoimmune disorders. J. Pediatr. Infect. Dis. Soc. 4, 198–204 (2015).

    Google Scholar 

  91. Yu, S. F. et al. Detecting Epstein-Barr virus DNA from peripheral blood mononuclear cells in adult patients with systemic lupus erythematosus in Taiwan. Med. Microbiol. Immunol. 194, 115–120 (2005).

    CAS  PubMed  Google Scholar 

  92. Moss, D. J. & Lutzky, V. P. EBV-specific immune response: early research and personal reminiscences. Curr. Top. Microbiol. Immunol. 390, 23–42 (2015).

    CAS  PubMed  Google Scholar 

  93. Ascherio, A. et al. Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286, 3083–3088 (2001).

    CAS  PubMed  Google Scholar 

  94. Rasmussen, N. S., Draborg, A. H., Nielsen, C. T., Jacobsen, S. & Houen, G. Antibodies to early EBV, CMV, and HHV6 antigens in systemic lupus erythematosus patients. Scand. J. Rheumatol. 44, 143–149 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Banko, A. et al. Epstein-Barr virus infection as potential indicator of the occurrence and clinical presentation of systemic lupus erythematosus. Front. Immunol. 14, 1307589 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Füst, G. The role of the Epstein-Barr virus in the pathogenesis of some autoimmune disorders — similarities and differences. Eur. J. Microbiol. Immunol. 1, 267–278 (2011).

    Google Scholar 

  97. Lupo, J. et al. Virological markers in Epstein-Barr virus-associated diseases. Viruses 15, 656 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Draborg, A., Izarzugaza, J. M. & Houen, G. How compelling are the data for Epstein-Barr virus being a trigger for systemic lupus and other autoimmune diseases? Curr. Opin. Rheumatol. 28, 398–404 (2016).

    CAS  PubMed  Google Scholar 

  99. Wandinger, K. et al. Association between clinical disease activity and Epstein-Barr virus reactivation in MS. Neurology 55, 178–184 (2000).

    CAS  PubMed  Google Scholar 

  100. Gross, A. J., Hochberg, D., Rand, W. M. & Thorley-Lawson, D. A. EBV and systemic lupus erythematosus: a new perspective. J. Immunol. 174, 6599–6607 (2005).

    CAS  PubMed  Google Scholar 

  101. Kuusela, E. et al. Serum Epstein-Barr virus DNA, detected by droplet digital PCR, correlates with disease activity in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 36, 778–784 (2018).

    PubMed  Google Scholar 

  102. McDermott, M., Molloy, M., Buckley, J. & Greally, J. Antibodies to Epstein-Barr viral antigens in familial rheumatoid arthritis. Ir. J. Med. Sci. 158, 203–205 (1989).

    CAS  PubMed  Google Scholar 

  103. Erre, G. L. et al. Increased Epstein-Barr virus DNA load and antibodies against EBNA1 and EA in Sardinian patients with rheumatoid arthritis. Viral Immunol. 28, 385–390 (2015).

    CAS  PubMed  Google Scholar 

  104. Petersen, J., Rhodes, G., Roudier, J. & Vaughan, J. H. Altered immune response to glycine-rich sequences of Epstein-Barr nuclear antigen-1 in patients with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum. 33, 993–1000 (1990).

    CAS  PubMed  Google Scholar 

  105. Croia, C. et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann. Rheum. Dis. 72, 1559–1568 (2013).

    CAS  PubMed  Google Scholar 

  106. Sakkas, L. I., Daoussis, D., Liossis, S. N. & Bogdanos, D. P. The infectious basis of ACPA-positive rheumatoid arthritis. Front. Microbiol. 8, 1853 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Roudier, J., Balandraud, N. & Auger, I. Anti PAD autoimmunity and rheumatoid arthritis. Jt. Bone Spine 85, 659–661 (2018).

    Google Scholar 

  108. Trier, N. H. et al. Antibodies to a strain-specific citrullinated Epstein-Barr virus peptide diagnoses rheumatoid arthritis. Sci. Rep. 8, 3684 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. Cech, T. R. & Steitz, J. A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77–94 (2014).

    CAS  PubMed  Google Scholar 

  110. Tsubota, K. et al. Increased levels of Epstein-Barr virus DNA in lacrimal glands of Sjögren’s syndrome patients. Acta Ophthalmol. Scand. 73, 425–430 (1995).

    CAS  PubMed  Google Scholar 

  111. Pasoto, S. G. et al. EBV reactivation serological profile in primary Sjögren’s syndrome: an underlying trigger of active articular involvement? Rheumatol. Int. 33, 1149–1157 (2013).

    CAS  PubMed  Google Scholar 

  112. Croia, C. et al. Implication of Epstein-Barr virus infection in disease-specific autoreactive B cell activation in ectopic lymphoid structures of Sjögren’s syndrome. Arthritis Rheumatol. 66, 2545–2557 (2014).

    CAS  PubMed  Google Scholar 

  113. Hedstrom, A. K. et al. High levels of Epstein-Barr virus nuclear antigen-1-specific antibodies and infectious mononucleosis act both independently and synergistically to increase multiple sclerosis risk. Front. Neurol. 10, 1368 (2019).

    PubMed  Google Scholar 

  114. Nielsen, T. R. et al. Effects of infectious mononucleosis and HLA-DRB1*15 in multiple sclerosis. Mult. Scler. 15, 431–436 (2009).

    CAS  PubMed  Google Scholar 

  115. Cortese, M. et al. Serologic response to the Epstein-Barr virus peptidome and the risk for multiple sclerosis. JAMA Neurol. 81, 515–524 (2024).

    PubMed  Google Scholar 

  116. Soldan, S. S. et al. Multiple sclerosis patient-derived spontaneous B cells have distinct EBV and host gene expression profiles in active disease. Nat. Microbiol. 9, 1540–1554 (2024).

    CAS  PubMed  Google Scholar 

  117. Thorley-Lawson, D. A. Epstein-Barr virus: exploiting the immune system. Nat. Rev. Immunol. 1, 75–82 (2001).

    CAS  PubMed  Google Scholar 

  118. Munz, C. Altered EBV specific immune control in multiple sclerosis. J. Neuroimmunol. 390, 578343 (2024).

    CAS  PubMed  Google Scholar 

  119. Ressing, M. E. et al. Epstein-Barr virus evasion of CD8+ and CD4+ T cell immunity via concerted actions of multiple gene products. Semin. Cancer Biol. 18, 397–408 (2008).

    CAS  PubMed  Google Scholar 

  120. Apcher, S. et al. mRNA translation regulation by the Gly-Ala repeat of Epstein-Barr virus nuclear antigen 1. J. Virol. 83, 1289–1298 (2009).

    CAS  PubMed  Google Scholar 

  121. Apcher, S., Daskalogianni, C., Manoury, B. & Fåhraeus, R. Epstein Barr virus-encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLoS Pathog. 6, e1001151 (2010).

    PubMed  PubMed Central  Google Scholar 

  122. Lista, M. J. et al. Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat. Commun. 8, 16043 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yao, Y., Kong, W., Yang, L., Ding, Y. & Cui, H. Immunity and immune evasion mechanisms of Epstein-Barr virus. Viral Immunol. 36, 303–317 (2023).

    CAS  PubMed  Google Scholar 

  124. Quinn, L. L. et al. The missing link in Epstein-Barr virus immune evasion: the BDLF3 gene induces ubiquitination and downregulation of major histocompatibility complex Class I (MHC-I) and MHC-II. J. Virol. 90, 356–367 (2016).

    CAS  PubMed  Google Scholar 

  125. Jilek, S. et al. HLA-B7-restricted EBV-specific CD8+ T cells are dysregulated in multiple sclerosis. J. Immunol. 188, 4671–4680 (2012).

    CAS  PubMed  Google Scholar 

  126. Jilek, S. et al. Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain 131, 1712–1721 (2008).

    PubMed  Google Scholar 

  127. Zdimerova, H. et al. Attenuated immune control of Epstein-Barr virus in humanized mice is associated with the multiple sclerosis risk factor HLA-DR15. Eur. J. Immunol. 51, 64–75 (2021).

    CAS  PubMed  Google Scholar 

  128. Vietzen, H. et al. Ineffective control of Epstein-Barr-virus-induced autoimmunity increases the risk for multiple sclerosis. Cell 186, 5705–5718 e5713 (2023).

    CAS  PubMed  Google Scholar 

  129. Sinigaglia, F. & Hammer, J. Defining rules for the peptide-MHC class II interaction. Curr. Opin. Immunol. 6, 52–56 (1994).

    CAS  PubMed  Google Scholar 

  130. Elsner, R. A. & Shlomchik, M. J. Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 53, 1136–1150 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Cusick, M. F., Libbey, J. E. & Fujinami, R. S. Molecular mimicry as a mechanism of autoimmune disease. Clin. Rev. Allergy Immunol. 42, 102–111 (2012).

    CAS  PubMed  Google Scholar 

  132. Chezar, I., Lobel-Lavi, L., Steinitz, M. & Laskov, R. Ongoing somatic hypermutation of the rearranged VH but not of the V-lambda gene in EBV-transformed rheumatoid factor-producing lymphoblastoid cell line. Mol. Immunol. 46, 80–90 (2008).

    CAS  PubMed  Google Scholar 

  133. Jenks, S. A., Cashman, K. S., Woodruff, M. C., Lee, F. E. & Sanz, I. Extrafollicular responses in humans and SLE. Immunol. Rev. 288, 136–148 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Di Niro, R. et al. Salmonella infection drives promiscuous B cell activation followed by extrafollicular affinity maturation. Immunity 43, 120–131 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. McClain, M. T. et al. An altered immune response to Epstein-Barr nuclear antigen 1 in pediatric systemic lupus erythematosus. Arthritis Rheum. 54, 360–368 (2006).

    CAS  PubMed  Google Scholar 

  136. Laurynenka, V., Ding, L., Kaufman, K. M., James, J. A. & Harley, J. B. A high prevalence of anti-EBNA1 heteroantibodies in systemic lupus erythematosus (SLE) supports anti-EBNA1 as an origin for SLE autoantibodies. Front. Immunol. 13, 830993 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Thorley-Lawson, D. A., Hawkins, J. B., Tracy, S. I. & Shapiro, M. The pathogenesis of Epstein-Barr virus persistent infection. Curr. Opin. Virol. 3, 227–232 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Vaughn, S. E., Kottyan, L. C., Munroe, M. E. & Harley, J. B. Genetic susceptibility to lupus: the biological basis of genetic risk found in B cell signaling pathways. J. Leukoc. Biol. 92, 577–591 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Alarcón-Riquelme, M. E. et al. Genome-wide association study in an Amerindian Ancestry population reveals novel systemic lupus erythematosus risk loci and the role of European admixture. Arthritis Rheumatol. 68, 932–943 (2016).

    PubMed  PubMed Central  Google Scholar 

  140. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Sun, C. et al. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat. Genet. 48, 323–330 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Liu, C. D., Lee, H. L. & Peng, C. W. B cell-specific transcription activator PAX5 recruits p300 to support EBNA1-driven transcription. J. Virol. 94, e02028–e02119 (2020).

    PubMed  PubMed Central  Google Scholar 

  143. Tempera, I. et al. Identification of MEF2B, EBF1, and IL6R as direct gene targets of Epstein-Barr Virus (EBV) nuclear antigen 1 critical for EBV-infected B-lymphocyte survival. J. Virol. 90, 345–355 (2016).

    CAS  PubMed  Google Scholar 

  144. Soni, V., Cahir-McFarland, E. & Kieff, E. LMP1 TRAFficking activates growth and survival pathways. Adv. Exp. Med. Biol. 597, 173–187 (2007).

    PubMed  Google Scholar 

  145. Minamitani, T. et al. Evasion of affinity-based selection in germinal centers by Epstein-Barr virus LMP2A. Proc. Natl Acad. Sci. USA 112, 11612–11617 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Altmann, M. & Hammerschmidt, W. Epstein-Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLoS Biol. 3, e404 (2005).

    PubMed  PubMed Central  Google Scholar 

  147. Barth, S. et al. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 36, 666–675 (2008).

    CAS  PubMed  Google Scholar 

  148. Cullen, B. R. Herpesvirus microRNAs: phenotypes and functions. Curr. Opin. Virol. 1, 211–215 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Skalsky, R. L. et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog. 8, e1002484 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Seto, E. et al. Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog. 6, e1001063 (2010).

    PubMed  PubMed Central  Google Scholar 

  151. Feederle, R. et al. A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog. 7, e1001294 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Samanta, M., Iwakiri, D., Kanda, T., Imaizumi, T. & Takada, K. EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. EMBO J. 25, 4207–4214 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Yokoe, S. et al. Epstein-Barr virus promotes the production of inflammatory cytokines in gingival fibroblasts and RANKL-induced osteoclast differentiation in RAW264.7 cells. Int. J. Mol. Sci. 23, 809 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Yokoi, T. et al. Epstein-Barr virus-immortalized B cells produce IL-6 as an autocrine growth factor. Immunology 70, 100–105 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Gires, O. et al. Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J. 16, 6131–6140 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Caldwell, R. G., Wilson, J. B., Anderson, S. J. & Longnecker, R. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9, 405–411 (1998).

    CAS  PubMed  Google Scholar 

  157. Babcock, G. J., Hochberg, D. & Thorley-Lawson, A. D. The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13, 497–506 (2000).

    CAS  PubMed  Google Scholar 

  158. Panagopoulos, D., Victoratos, P., Alexiou, M., Kollias, G. & Mosialos, G. Comparative analysis of signal transduction by CD40 and the Epstein-Barr virus oncoprotein LMP1 in vivo. J. Virol. 78, 13253–13261 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Swanson-Mungerson, M. A., Caldwell, R. G., Bultema, R. & Longnecker, R. Epstein-Barr virus LMP2A alters in vivo and in vitro models of B-cell anergy, but not deletion, in response to autoantigen. J. Virol. 79, 7355–7362 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Roughan, J. E. & Thorley-Lawson, D. A. The intersection of Epstein-Barr virus with the germinal center. J. Virol. 83, 3968–3976 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Sutkowski, N., Chen, G., Calderon, G. & Huber, B. T. Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. J. Virol. 78, 7852–7860 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Sutkowski, N., Conrad, B., Thorley-Lawson, D. A. & Huber, B. T. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 15, 579–589 (2001).

    CAS  PubMed  Google Scholar 

  163. Stastny, P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N. Engl. J. Med. 298, 869–871 (1978).

    CAS  PubMed  Google Scholar 

  164. Auger, I. & Roudier, J. HLA-DR and the development of rheumatoid arthritis. Autoimmunity 26, 123–128 (1997).

    CAS  PubMed  Google Scholar 

  165. Ollier, W. & Thomson, W. Population genetics of rheumatoid arthritis. Rheum. Dis. Clin. North. Am. 18, 741–759 (1992).

    CAS  PubMed  Google Scholar 

  166. Albani, S., Tuckwell, J. E., Esparza, L., Carson, D. A. & Roudier, J. The susceptibility sequence to rheumatoid arthritis is a cross-reactive B cell epitope shared by the Escherichia coli heat shock protein dnaJ and the histocompatibility leukocyte antigen DRB10401 molecule. J. Clin. Invest. 89, 327–331 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Roudier, J., Petersen, J., Rhodes, G. H., Luka, J. & Carson, D. A. Susceptibility to rheumatoid arthritis maps to a T-cell epitope shared by the HLA-Dw4 DR beta-1 chain and the Epstein-Barr virus glycoprotein gp110. Proc. Natl Acad. Sci. USA 86, 5104–5108 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Nolan, D. et al. Contributions of vitamin D response elements and HLA promoters to multiple sclerosis risk. Neurology 79, 538–546 (2012).

    CAS  PubMed  Google Scholar 

  169. Lincoln, M. R. et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat. Genet. 37, 1108–1112 (2005).

    CAS  PubMed  Google Scholar 

  170. A meta-analysis of whole genome linkage screens in multiple sclerosis. J. Neuroimmunol. 143, 39-46 (2003).

  171. Menegatti, J., Schub, D., Schafer, M., Grasser, F. A. & Ruprecht, K. HLA-DRB1*15:01 is a co-receptor for Epstein-Barr virus, linking genetic and environmental risk factors for multiple sclerosis. Eur. J. Immunol. 51, 2348–2350 (2021).

    CAS  PubMed  Google Scholar 

  172. Agostini, S. et al. HLA alleles modulate EBV viral load in multiple sclerosis. J. Transl. Med. 16, 80 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang, J. et al. HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell 183, 1264–1281.e20 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Sundqvist, E. et al. Epstein-Barr virus and multiple sclerosis: interaction with HLA. Genes. Immun. 13, 14–20 (2012).

    CAS  PubMed  Google Scholar 

  175. Kanda, T., Yajima, M. & Ikuta, K. Epstein-Barr virus strain variation and cancer. Cancer Sci. 110, 1132–1139 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Palser, A. L. et al. Genome diversity of Epstein-Barr virus from multiple tumor types and normal infection. J. Virol. 89, 5222–5237 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Mechelli, R. et al. Epstein-Barr virus genetic variants are associated with multiple sclerosis. Neurology 84, 1362–1368 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Stashenko, P., Nadler, L. M., Hardy, R. & Schlossman, S. F. Characterization of a human B lymphocyte-specific antigen. J. Immunol. 125, 1678–1685 (1980).

    CAS  PubMed  Google Scholar 

  179. Dörner, T. & Burmester, G. R. The role of B cells in rheumatoid arthritis: mechanisms and therapeutic targets. Curr. Opin. Rheumatol. 15, 246–252 (2003).

    PubMed  Google Scholar 

  180. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    CAS  PubMed  Google Scholar 

  181. Arnold, J. et al. Efficacy and safety of obinutuzumab in systemic lupus erythematosus patients with secondary non-response to rituximab. Rheumatology 61, 4905–4909 (2022).

    CAS  PubMed  Google Scholar 

  182. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    CAS  PubMed  Google Scholar 

  183. Cui, X. & Snapper, C. M. Epstein Barr virus: development of vaccines and immune cell therapy for EBV-associated diseases. Front. Immunol. 12, 734471 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Business Wire. Atara Biotherapeutics announces primary analysis data from phase 2 EMBOLD clinical trial of ATA188 in non-active progressive multiple sclerosis. https://www.businesswire.com/news/home/20231108902565/en/ (8 November 2023).

  185. Lees, J. F. et al. The Epstein-Barr virus candidate vaccine antigen gp340/220 is highly conserved between virus types A and B. Virology 195, 578–586 (1993).

    CAS  PubMed  Google Scholar 

  186. Gu, S. Y. et al. First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen. Dev. Biol. Stand. 84, 171–177 (1995).

    CAS  PubMed  Google Scholar 

  187. Moutschen, M. et al. Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine in healthy adults. Vaccine 25, 4697–4705 (2007).

    CAS  PubMed  Google Scholar 

  188. Cohen, J. I. Vaccine development for Epstein-Barr virus. Adv. Exp. Med. Biol. 1045, 477–493 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Wei, C. J. et al. A bivalent Epstein-Barr virus vaccine induces neutralizing antibodies that block infection and confer immunity in humanized mice. Sci. Transl. Med. 14, eabf3685 (2022).

    CAS  PubMed  Google Scholar 

  190. Chen, W. H. et al. Epstein-Barr virus gH/gL has multiple sites of vulnerability for virus neutralization and fusion inhibition. Immunity 55, 2135–2148 e2136 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Escalante, G. M., Mutsvunguma, L. Z., Muniraju, M., Rodriguez, E. & Ogembo, J. G. Four decades of prophylactic EBV vaccine research: a systematic review and historical perspective. Front. Immunol. 13, 867918 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Rozman, M., Korac, P., Jambrosic, K. & Zidovec Lepej, S. Progress in prophylactic and therapeutic EBV vaccine development based on molecular characteristics of EBV target antigens. Pathogens 11, 864 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Atkins, S. L. et al. Small molecule screening identifies inhibitors of the Epstein-Barr virus deubiquitinating enzyme, BPLF1. Antivir. Res. 173, 104649 (2020).

    CAS  PubMed  Google Scholar 

  194. Monaco, M. C. G. et al. EBNA1 inhibitors block proliferation of spontaneous lymphoblastoid cell lines from patients with multiple sclerosis and healthy controls. Neurol. Neuroimmunol. Neuroinflamm. 10, e200149 (2023).

    PubMed  PubMed Central  Google Scholar 

  195. Zhai, L. Y. et al. Targeting the RNA G-quadruplex and protein interactome for antiviral therapy. J. Med. Chem. 65, 10161–10182 (2022).

    CAS  PubMed  Google Scholar 

  196. Zhang, B. et al. Targeting the transmembrane domain 5 of latent membrane protein 1 using small molecule modulators. Eur. J. Med. Chem. 214, 113210 (2021).

    CAS  PubMed  Google Scholar 

  197. Arbuckle, M. R., Reichlin, M., Harley, J. B. & James, J. A. Shared early autoantibody recognition events in the development of anti-Sm B/B′ in human lupus. Scand. J. Immunol. 50, 447–455 (1999).

    CAS  PubMed  Google Scholar 

  198. McClain, M. T. et al. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat. Med. 11, 85–89 (2005).

    CAS  PubMed  Google Scholar 

  199. Sabbatini, A., Bombardieri, S. & Migliorini, P. Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein-Barr virus-encoded nuclear antigen EBNA I. Eur. J. Immunol. 23, 1146–1152 (1993).

    CAS  PubMed  Google Scholar 

  200. Sabbatini, A., Dolcher, M. P., Marchini, B., Bombardieri, S. & Migliorini, P. Mapping of epitopes on the SmD molecule: the use of multiple antigen peptides to measure autoantibodies in systemic lupus erythematosus. J. Rheumatol. 20, 1679–1683 (1993).

    CAS  PubMed  Google Scholar 

  201. Csorba, K. et al. Anti-C1q antibodies as occurring in systemic lupus erythematosus could be induced by an Epstein-Barr virus-derived antigenic site. Front. Immunol. 10, 2619 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Baboonian, C., Venables, P. J., Williams, D. G., Williams, R. O. & Maini, R. N. Cross reaction of antibodies to a glycine/alanine repeat sequence of Epstein-Barr virus nuclear antigen-1 with collagen, cytokeratin, and actin. Ann. Rheum. Dis. 50, 772–775 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Davies, J. M., Mackay, I. R. & Rowley, M. J. Rheumatoid arthritis sera react with a phage-displayed peptide selected by a monoclonal antibody to type II collagen that has homology to EBNA-1. Autoimmunity 30, 53–59 (1999).

    CAS  PubMed  Google Scholar 

  204. Mahler, M., Mierau, R., Genth, E. & Blüthner, M. Development of a CENP-A/CENP-B-specific immune response in a patient with systemic sclerosis. Arthritis Rheum. 46, 1866–1872 (2002).

    CAS  PubMed  Google Scholar 

  205. Tengvall, K. et al. Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc. Natl Acad. Sci. USA 116, 16955–16960 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Lindsey, J. W., deGannes, S. L., Pate, K. A. & Zhao, X. Antibodies specific for Epstein-Barr virus nuclear antigen-1 cross-react with human heterogeneous nuclear ribonucleoprotein L. Mol. Immunol. 69, 7–12 (2016).

    CAS  PubMed  Google Scholar 

  207. Fairweather, D., Frisancho-Kiss, S. & Rose, N. R. Sex differences in autoimmune disease from a pathological perspective. Am. J. Pathol. 173, 600–609 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Lahita, R. G. The immunoendocrinology of systemic lupus erythematosus. Clin. Immunol. 172, 98–100 (2016).

    CAS  PubMed  Google Scholar 

  209. Crowson, C. S. et al. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum. 63, 633–639 (2011).

    PubMed  PubMed Central  Google Scholar 

  210. Harbo, H. F., Gold, R. & Tintoré, M. Sex and gender issues in multiple sclerosis. Ther. Adv. Neurol. Disord. 6, 237–248 (2013).

    PubMed  PubMed Central  Google Scholar 

  211. Dou, D. R. et al. Xist ribonucleoproteins promote female sex-biased autoimmunity. Cell 187, 733–749 e716 (2024).

    CAS  PubMed  Google Scholar 

  212. Wagner, H. J., Hornef, M., Teichert, H. M. & Kirchner, H. Sex difference in the serostatus of adults to the Epstein-Barr virus. Immunobiology 190, 424–429 (1994).

    CAS  PubMed  Google Scholar 

  213. Nielsen, T. R., Pedersen, M., Rostgaard, K., Frisch, M. & Hjalgrim, H. Correlations between Epstein-Barr virus antibody levels and risk factors for multiple sclerosis in healthy individuals. Mult. Scler. 13, 420–423 (2007).

    CAS  PubMed  Google Scholar 

  214. Al-Obaidi, A. B., Ali, Z. A., Rasool Almashta, S. A. & Faisel Ghazi, H. The potential role of Epstein Barr virus in multiple sclerosis molecular and serological study. Wiad. Lek. 75, 691–696 (2022).

    PubMed  Google Scholar 

  215. Stowe, R. P., Pierson, D. L. & Barrett, A. D. Elevated stress hormone levels relate to Epstein-Barr virus reactivation in astronauts. Psychosom. Med. 63, 891–895 (2001).

    CAS  PubMed  Google Scholar 

  216. Guevara, J. E., Gilbert, S., Murdock, K. W., Stowe, R. P. & Fagundes, C. P. Sex differences in executive functioning and latent herpesvirus reactivation among bereaved and nonbereaved individuals. Stress. Health 35, 396–406 (2019).

    PubMed  PubMed Central  Google Scholar 

  217. Ford, J. L. & Stowe, R. P. Depressive symptoms are associated with salivary shedding of Epstein-Barr virus in female adolescents: the role of sex differences. Psychoneuroendocrinology 86, 128–133 (2017).

    PubMed  PubMed Central  Google Scholar 

  218. Yamanashi, H. et al. Association between Epstein-Barr virus serological reactivation and psychological distress: a cross-sectional study of Japanese community-dwelling older adults. Aging 14, 8258–8269 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Keane, J. T. et al. Gender and the sex hormone estradiol affect multiple sclerosis risk gene expression in Epstein-Barr virus-infected B cells. Front. Immunol. 12, 732694 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Zhao, B. et al. RNAs induced by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proc. Natl Acad. Sci. USA 103, 1900–1905 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Robinson, Steinman and Lanz labs for their scientific insights and discussion. We acknowledge funding from NIH R01 AI173189, NIH PATHO-PH2-SUB_17_23, DoD HT9425-23-1-0595 and the Lupus Research Alliance.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to review of the literature and discussion of the content. W.H.R. and Z.Z.L. researched data for the article, wrote the article, and W.H.R. edited and revised the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to William H. Robinson.

Ethics declarations

Competing interests

W.H.R. and T.V.L. are consultants for and own equity in Flatiron Bio, and W.H.R. serves on the board of directors of Flatiron Bio. W.H.R., S.Y. and T.V.L. own equity in Ebvio, and W.H.R. serves on the board of directors of Ebvio.

Peer review

Peer review information

Nature Reviews Rheumatology thanks John Harley, Gunnar Houen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, W.H., Younis, S., Love, Z.Z. et al. Epstein–Barr virus as a potentiator of autoimmune diseases. Nat Rev Rheumatol 20, 729–740 (2024). https://doi.org/10.1038/s41584-024-01167-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01167-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing