Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A miniaturized cascaded-diode-array spectral imager

Abstract

Spectral imaging is a critical technology for analysing the spectral and spatial information of input light signals for both scientific research and industrial uses. Traditional imaging systems, typically incorporating spectrometers with bulky optical components and moving mechanical parts, hinder miniaturization and on-chip integration, which is crucial for in situ spectroscopy and high-speed spectral imaging. This challenge has driven efforts towards highly integrated imaging devices and small-footprint spectrometers, aiming for portable and integrable spectral imagers. Here, inspired by the success of the digital camera-on-a-chip device concept, we develop a miniaturized on-chip spectral imager design based on a vertically cascaded n–p–n photodiode array. The device incorporates an AlGaN-based n–p diode with a compositionally graded profile in the active region in conjunction with a GaN-based p–n diode. Our proof-of-concept configuration enables electrically tunable spectral measurements from 250 nm to 365 nm, a spectral range previously inaccessible to miniaturized on-chip spectral imagers. The device achieves a high peak wavelength accuracy of 0.62 nm and a sub-10-ns response time. We demonstrate a 10 × 10 cascaded diode array for direct spectral imaging with high-quality spectral-to-spatial mapping. We spatially distinguish thin films of four organic materials on the same substrate through single-shot imaging. Our work establishes a scalable pathway for manufacturing and integrating spectral imagers into portable systems at low cost.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Working principle of a cascaded photodiode and its array for building an on-chip spectral imager.
Fig. 2: Optical and electrical characterization of cascaded photodiodes.
Fig. 3: Evaluation of the spectral resolving capability of the cascaded photodiode.
Fig. 4: Single-shot spectral imaging.

Similar content being viewed by others

Data availability

All the data needed to evaluate the conclusions in the paper are presented in the paper and/or Supplementary Information. Additional data related to this paper are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yang, Z., Albrow-Owen, T., Cai, W. & Hasan, T. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021).

    Article  Google Scholar 

  2. Pohl, D. et al. An integrated broadband spectrometer on thin-film lithium niobite. Nat. Photon. 14, 24–29 (2020).

    Article  ADS  Google Scholar 

  3. Redding, B., Liew, S. F., Sarma, R. & Cao, H. Compact spectrometer based on a disordered photonic chip. Nat. Photon. 7, 1746–1751 (2013).

    Article  Google Scholar 

  4. Tian, M. et al. Miniaturized on-chip spectrometer enabled by electrochromic modulation. Light Sci. Appl. 13, 278 (2024).

    Article  ADS  Google Scholar 

  5. Cai, G. et al. Compact angle-resolved metasurface spectrometer. Nat. Mater. 23, 71–78 (2024).

    Article  ADS  Google Scholar 

  6. Xiong, J. et al. Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces. Optica 9, 461–468 (2022).

    Article  ADS  Google Scholar 

  7. Li, A. & Fainman, Y. On-chip spectrometers using stratified waveguide filters. Nat. Commun. 12, 2704 (2018).

    Article  ADS  Google Scholar 

  8. Chen, C., Gu, H. & Liu, S. Ultra-simplified diffraction-based computational spectrometer. Light Sci. Appl. 13, 9 (2024).

    Article  ADS  Google Scholar 

  9. Edwards, P. et al. Smartphone based optical spectrometer for diffusive reflectance spectroscopic measurement of hemoglobin. Sci. Rep. 7, 12224 (2017).

    Article  ADS  Google Scholar 

  10. Kita, D. M. et al. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat. Commun. 9, 4405 (2018).

    Article  ADS  Google Scholar 

  11. Wadduwage, D. N. et al. Near-common-path interferometer for imaging Fourier-transform spectroscopy in wide-field microscopy. Optica 5, 546–556 (2017).

    Article  ADS  Google Scholar 

  12. Yang, Z. et al. Single-nanowire spectrometers. Science 365, 1017–1020 (2019).

    Article  ADS  Google Scholar 

  13. Meng, J., Cadusch, J. J. & Crozier, K. B. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm. Nano Lett. 20, 320–328 (2019).

    Article  ADS  Google Scholar 

  14. Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015).

    Article  ADS  Google Scholar 

  15. Zhu, X. et al. Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light Sci. Appl. 9, 73 (2020).

    Article  ADS  Google Scholar 

  16. Zhang, W. et al. Deeply learned broadband encoding stochastic hyperspectral imaging. Light Sci. Appl. 10, 108 (2021).

    Article  ADS  Google Scholar 

  17. Yuan, S., Naveh, D., Watanabe, K., Taniguchi, T. & Xia, F. A wavelength-scale black phosphorus spectrometer. Nat. Photon. 15, 601–607 (2021).

    Article  ADS  Google Scholar 

  18. Yoon, H. H. et al. Miniaturized spectrometers with a tunable van der Waals junction. Science 378, 296–299 (2022).

    Article  ADS  Google Scholar 

  19. Wu, G. et al. Miniaturized spectrometer with intrinsic long-term image memory. Nat. Commun. 15, 676 (2024).

    Article  ADS  Google Scholar 

  20. Deng, W. et al. Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers. Nat. Commun. 13, 4627 (2022).

    Article  ADS  Google Scholar 

  21. He, X. et al. A microsized optical spectrometer based on an organic photodetector with an electrically tunable spectral response. Nat. Electron. 7, 694–704 (2024).

    Article  Google Scholar 

  22. van Deurzen, L. et al. Using both faces of polar semiconductor wafers for functional devices. Nature 634, 334–340 (2024).

    Article  ADS  Google Scholar 

  23. Memon, M. et al. A three-terminal light emitting and detecting diode. Nat. Electron. 7, 279–287 (2024).

    Article  Google Scholar 

  24. Senda, K., Terakawa, S., Hiroshima, Y., Susa, M. & Kunii, T. Analysis of n–p–n photodiode in p-well CPD image sensors. IEEE Trans. Electron Devices 31, 1873–1877 (1984).

    Article  ADS  Google Scholar 

  25. Arias, J. M. et al. HgCdTe dual‐band infrared photodiodes grown by molecular beam epitaxy. J. Appl. Phys. 70, 4620–4622 (1991).

    Article  ADS  Google Scholar 

  26. Tang, X., Ackerman, M. M., Chen, M. & Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photon. 13, 277–282 (2019).

    Article  ADS  Google Scholar 

  27. Yang, J., Liu, K., Chen, X. & Shen, D. Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors. Prog. Quant. Electron. 83, 100397 (2022).

    Article  Google Scholar 

  28. Cai, Q. et al. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light Sci. Appl. 10, 94 (2021).

    Article  ADS  Google Scholar 

  29. Wang, H. et al. High-responsivity and fast-response ultraviolet phototransistors based on enhanced p-GaN/AlGaN/GaN HEMTs. ACS Photonics 9, 2040–2045 (2022).

    Article  Google Scholar 

  30. Xu, W. et al. Magnesium ion-implantation-based gallium nitride pin photodiode for visible-blind ultraviolet detection. Photon. Res. 7, B48–B54 (2019).

    Article  Google Scholar 

  31. Munoz, E. et al. Photoconductor gain mechanisms in GaN ultraviolet detectors. Appl. Phys. Lett. 71, 870–872 (1997).

    Article  ADS  Google Scholar 

  32. Xu, H., Qin, Y., Hu, G. & Tsang, H. K. Breaking the resolution-bandwidth limit of chip-scale spectrometry by harnessing a dispersion-engineered photonic molecule. Light Sci. Appl. 12, 64 (2023).

    Article  ADS  Google Scholar 

  33. Guo, L. et al. A single-dot perovskite spectrometer. Adv. Mater. 34, 2200221 (2022).

    Article  Google Scholar 

  34. Guo, T. et al. Durable and programmable ultrafast nanophotonic matrix of spectral pixels. Nat. Nanotechnol. 19, 1635–11643 (2024).

    Article  ADS  Google Scholar 

  35. Kneissl, M., Seong, T. Y., Han, J. & Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photon. 13, 233–244 (2019).

    Article  ADS  Google Scholar 

  36. Khan, A., Balakrishnan, K. & Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photon. 2, 77–84 (2008).

    Article  ADS  Google Scholar 

  37. Cadusch, J. J., Meng, J., Craig, B. & Crozier, K. B. Silicon microspectrometer chip based on nanostructured fishnet photodetectors with tailored responsivities and machine learning. Optica 6, 1171–1177 (2019).

    Article  ADS  Google Scholar 

  38. Kong, L. et al. Single-detector spectrometer using a superconducting nanowire. Nano Lett. 21, 9625–9632 (2021).

    Article  ADS  Google Scholar 

  39. Wang, J. et al. Single-pixel p-graded-n junction spectrometers. Nat. Commun. 15, 1773 (2024).

    Article  ADS  Google Scholar 

  40. Bian, L. et al. A broadband hyperspectral image sensor with high spatio-temporal resolution. Nature 635, 73–81 (2024).

    Article  ADS  Google Scholar 

  41. Fan, A. et al. Dispersion-assisted high-dimensional photodetector. Nature 630, 77–83 (2024).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (grant nos. 62322410 to H.S. and T252790007 to S.L.), the National Key Research & Development Program of China (grant no. 2023YFB3610500 to H.S.), the Anhui Provincial Natural Science Foundation (grant no. 2308085J08 to H.S.) and the National Key Research and Development Program of China (grant no. 2023YFB3405600 to Z.Y.). This work was partially conducted at the Center for Micro- and Nanoscale Research and Fabrication, as well as at the Instruments Center for Physical Science at the University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Contributions

H.S. conceived of the ideas during discussions with H.Y. and designed the experiments. H.Y. and M.H.M. carried out the characterizations and measurements. H.Y., M.H.M., Z.G., Y.L., Y.K. and Q.Z. grew the cascaded photodiode heterostructures and fabricated the devices. M.Y., Y.C. and Z.Y. developed the reconstruction code. H.Y., M.H.M., Z.G., Y.L., Y.K., Q.Z. and W.C. analysed the data. S.L., Z.Y. and T.H. commented on the experimental results and helped with the data analysis. H.Y. and H.S. wrote the paper, and H.S. supervised the research. All the authors participated in the scientific discussion extensively and contributed to the writing of the paper.

Corresponding author

Correspondence to Haiding Sun.

Ethics declarations

Competing interests

H.S. and H.Y. have filed a Chinese patent application (202510493026.2) and a patent cooperation treaty (PCT) patent application (PCT/CN2025/089863) related to the framework presented in this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Tables 1–3.

Source data

Source Data Figs. 2–4

Source data for Figs. 2–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Memon, M.H., Yao, M. et al. A miniaturized cascaded-diode-array spectral imager. Nat. Photon. (2025). https://doi.org/10.1038/s41566-025-01754-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-025-01754-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing